
A Front-end Execution Architecture for High Energy Efficiency

Ryota Shioya∗, Masahiro Goshima† and Hideki Ando∗

∗ Department of Electrical Engineering and Computer Science, Nagoya University, Aichi, Japan
† Information Systems Architecture Research Division, National Institute of Informatics, Tokyo, Japan

Email: {shioya, ando}@nuee.nagoya-u.ac.jp, goshima@nii.ac.jp

Abstract—Smart phones and tablets have recently become
widespread and dominant in the computer market. Users
require that these mobile devices provide a high-quality experi-
ence and an even higher performance. Hence, major develop-
ers adopt out-of-order superscalar processors as application
processors. However, these processors consume much more
energy than in-order superscalar processors, because a large
amount of energy is consumed by the hardware for dynamic
instruction scheduling. We propose a Front-end Execution
Architecture (FXA). FXA has two execution units: an out-of-
order execution unit (OXU) and an in-order execution unit
(IXU). The OXU is the execution core of a common out-of-
order superscalar processor. In contrast, the IXU comprises
functional units and a bypass network only. The IXU is placed
at the processor front end and executes instructions without
scheduling. Fetched instructions are first fed to the IXU,
and the instructions that are already ready or become ready
to execute by the resolution of their dependencies through
operand bypassing in the IXU are executed in-order. Not-
ready instructions go through the IXU as a NOP; thereby,
its pipeline is not stalled, and instructions keep flowing. The
not-ready instructions are then dispatched to the OXU, and
are executed out-of-order. The IXU does not include dynamic
scheduling logic, and its energy consumption is consequently
small. Evaluation results show that FXA can execute over
50% of instructions using IXU, thereby making it possible
to shrink the energy-consuming OXU without incurring per-
formance degradation. As a result, FXA achieves both a high
performance and low energy consumption. We evaluated FXA
compared with conventional out-of-order/in-order superscalar
processors after ARM big.LITTLE architecture. The results
show that FXA achieves performance improvements of 67% at
the maximum and 7.4% on geometric mean in SPECCPU INT
2006 benchmark suite relative to a conventional superscalar
processor (big), while reducing the energy consumption by
86% at the issue queue and 17% in the whole processor.
The performance/energy ratio (the inverse of the energy-delay
product) of FXA is 25% higher than that of a conventional
superscalar processor (big) and 27% higher than that of a
conventional in-order superscalar processor (LITTLE).

Keywords-Core Microarchitecture, Hybrid In-Order/Out-of-
Order Core, Energy Efficiency

I. INTRODUCTION

The single thread performance of a core remains im-
portant, even in the era of multi-core processors, and is
considered to be important even for mobile devices, such as
smart phones and tablets, which have become widespread
and dominant in the computer market. To provide high

single thread performance, major developers have adopted
out-of-order superscalar processors in these mobile devices.
For example, iPhone, iPad, and major Android devices are
equipped with out-of-order superscalar processors, such as
ARM Cortex A9 and its successors [1], [9], [3]. The appli-
cations in these devices have become increasingly complex
in order to provide a high-quality user experience and they
require an ever higher processor performance. These appli-
cations are usually implemented on HTML5 with JavaScript
or application virtual machines. They are generally slower
than native binary applications, and it is essentially difficult
to parallelize them. Consequently, these mobile devices are
equipped with out-of-order superscalar processors with a
high performance.

Although the performance level of out-of-order super-
scalar processors is high, they consume much more energy
than do in-order superscalar processors, because a large
amount of energy is consumed by hardware for dynamic
instruction scheduling [6], [7], such as an issue queue (IQ)
and a load/store queue (LSQ), which comprises mainly
heavily multi-ported memories. The energy consumption
per access of a multi-ported memory is proportional to its
capacity and the number of its ports [23]. Moreover, the
number of accesses is also increased with the issue width.
Consequently, its energy consumption is very large.

We propose a Front-end Execution Architecture (FXA).
FXA has two execution units, an out-of-order execution
unit (OXU) and an in-order execution unit (IXU), using
which it achieves a higher performance and lower energy
consumption than do conventional out-of-order superscalar
processors. The OXU is the execution core of a common
out-of-order superscalar processor, which includes several
components, such as an IQ and functional units (FUs). In
contrast, the IXU comprises FUs and a bypass network only
and is placed in the processor front end. In the front end,
source operands are read, and then, instructions that are
ready to execute at this time are executed in the IXU and
not dispatched to the OXU.

The IXU also executes instructions whose dependency is
dissolved in it, in addition to instructions that are ready to
execute at reading source operands. The IXU can thereby
execute many instructions. Moreover, in the IXU, FUs are
placed over multiple stages and this allows the IXU to



execute more instructions (Section II). The evaluation results
presented in Section VI show that over 50% of instructions
are executed in the IXU.

This execution in the IXU reduces the energy consump-
tion of the OXU. In particular, the energy consumption
of the IQ is greatly reduced. Since the IXU can execute
many instructions, the capacity and issue width of the IQ
is reduced without performance degradation being incurred.
Moreover, the number of accesses to the IQ is greatly
reduced, because instructions executed in the IXU are not
dispatched to the OXU. The evaluation results presented in
Section VI show that the energy consumption of the IQ is
reduced by 86%. The energy consumption of the LSQ is
also reduced, because the detection of the order violation of
load/store instructions and the writing of load instructions
to the LSQ are partially omitted (details are described in
Section V).

In addition to reducing energy consumption, the instruc-
tion execution in the IXU improves performance. The IXU
does not have multi-ported structures, such as an IQ. Hence,
IXU can have many FUs without a large energy overhead
being incurred, which makes it possible to improve perfor-
mance.

As a result, FXA achieves both high performance and
low energy consumption. We evaluated FXA compared with
conventional out-of-order/in-order superscalar cores after
ARM big.LITTLE architecture [13], [3], [8]. The evaluation
results show that FXA achieves IPC improvements of 5.7%
(and 7.4% with integer benchmarks only) on geometric mean
in SPECCPU 2006 benchmark suite to the big core, while
reducing the energy consumption 17%. The performance/
energy ratio (the inverse of the energy-delay product) of
FXA is 25% higher than that of the big core, and even 27%
higher than that of the little core.

However, our goal is not to replace both of the big and
little cores by FXA cores but rather to replace only the
big core by an FXA core as described in Section VI-I. In
this way, enjoying the energy optimization of big.LITTLE,
application programs that require high-performance of big
cores can be executed with lower energy consumption.

The rest of the paper is organized as follows. In Section II,
the basic characteristics of FXA are described, and in
Section III, its details and optimization. In Section IV and
Section V, its performance and energy consumption are
given. In Section VI, evaluation results are presented. In
Section VII, related work is summarized.

II. FRONT-END EXECUTION ARCHITECTURE

We propose a Front-end Execution Architecture (FXA). In
this section, we first describe the structure of FXA, and then
its behavior and details.

A. Structure
We describe the structure of FXA by comparing it to

that of a conventional out-of-order superscalar processor.
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Figure 1: Conventional superscalar architecture.
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Figure 2: Front-end execution architecture.

Figure 1 shows the pipeline and block diagram of a conven-
tional out-of-order superscalar processor. This figure shows
a physical register-based architecture [25], [11], [20], [14].
Hereafter, the term “conventional superscalar processor”
refers to this architecture. In contrast, Figure 2 shows the
pipeline and the block diagram of FXA. FXA has two
execution units:

1) Out-of-order execution unit (OXU): This unit is the
execution core of a conventional superscalar processor.
In Figure 2, the element placed after the “schedule”
stage is an OXU.

2) In-order execution unit (IXU): This unit is an ex-
ecution structure that is unique to FXA. The main
components of an IXU are FUs and a bypass network.
As shown in Figure 2, the IXU is placed between
the rename stage and the dispatch stage in the front
end. FXA has a register read stage after the rename
stage in addition to that in the OXU. Source operand
values read from the register read stage in the front
end are fed to the IXU, and using these, instructions
are executed in-order.

FXA has a datapath that accesses the PRF in the front
end for supplying source operands to the IXU. The IXU and
OXU partially share the ports of the PRF. The IXU accesses
the shared ports only when the OXU does not access them.
Additionally, the scoreboard of the PRF is accessed in the
front end for checking whether the values read from the PRF
are available. Each entry of the scoreboard is a 1-bit flag that
indicates whether a value in a corresponding entry of the
PRF is available. It should be noted that this scoreboard is a
module that a conventional superscalar processor originally



provides [25] 1. Hereafter, the term “scoreboard” refers to
the PRF scoreboard.

B. Basic Behavior of FXA

The IXU functions as a filter for the OXU. That is,
instructions executed in the IXU are removed from the
instruction pipeline and are not executed in the OXU. This
section describes this behavior by comparing conventional
superscalar processors and FXA. It should be noted that, in
this section, instructions are assumed to be integer instruc-
tions with 1-cycle latency. The execution of other types of
instructions is described in Section II-D below.

The behavior of FXA above a rename stage is the same as
that of conventional superscalar processors. FXA processes
instructions below the rename stage as follows:

1) Read from the PRF and the scoreboard at the register
read stage in the front end.

2) Check whether instructions are ready. Hereafter, we
use the term “ready instruction” to refer to an instruc-
tion that is ready to execute. Source operands can be
obtained through the following two paths, and, if all
source operands are thus obtained, the instruction is
ready.

a) Read from the PRF.
b) Bypassed from the FUs in the IXU.

Whether values read from the PRF are available is
checked by reading the scoreboard.

3) Depending on whether an instruction is ready, the
instruction is processed as follows:

a) A ready instruction is executed in the IXU and
is not dispatched to the IQ. Its execution result
is written to the PRF after it exits the IXU. The
instruction is committed later as in conventional
superscalar processors2.

b) A not-ready instruction goes through the IXU as
a NOP. The instruction is dispatched to the IQ
and is executed in much the same way as it is
executed in conventional superscalar processors.

It should be noted that the behavior of the IXU for not-
ready instructions is different from that of in-order super-
scalar processors. When a not-ready instruction is decoded,
an in-order superscalar processor stalls its pipeline until
its readiness is resolved. In contrast, in FXA, not-ready
instructions go through its pipeline as a NOP; thereby, its
pipeline is not stalled, and instructions keep flowing.

The IXU and the OXU are placed in series and not in
parallel as in a clustered architecture [11], [16]. This is
because serial placement greatly reduces the complexity of

1Operands that are already written to the PRF are not woken up, and
consequently, they must be dispatched to the IQ as initially ready. For
detecting such initially ready operands, this scoreboard is used [25].

2The entries of a reorder buffer are allocated for all instructions for
implementing precise exception.

bypassing, wake-up, and steering as described in Section III
and VII-A. In contrast, parallel placement cannot reduce this
complexity and its merit is negligible; its branch mispredic-
tion penalty is slightly reduced by the shortened pipeline
length.

C. Detailed Behavior of IXU

In this section, first the structure and behavior of the IXU
are described, and then, its control.

1) Structure and Behavior of IXU: An IXU has FUs
serially placed over 2 – 3 stages to increase the number of
instructions executed in the IXU. Figure 3a shows a datapath
example of an IXU with the FUs of 2-instruction width ×
2 stages. In this figure, FU(y, x) denotes an FU at the x-th
position from the left and y-th from the top. The FUs are
connected through the bypass network that allows each FU
to use each other’s execution results. In Figure 3a, it can be
seen that source operands read from the PRF are fed from
the left side, and the execution results are fed to the right
hand side and written to the PRF.

We describe the behavior of an IXU using an example
where the code shown in Figure 4 is executed on the IXU
shown in Figure 3a. The code includes the serially dependent
instructions from I0 to I3. All the source operands, except
C, E, and G, shown in Figure 4, have already been read
from the PRF. The behavior of each cycle is as follows.

• Cycle 1: Figure 3b shows the state of the first cycle. In
this cycle, I0 and I1 are at the first stage of the IXU. I0
on FU(0, 0) is executed because all its source operands
are ready, and the execution result C is outputted. An
execution result is fed through the bypass network and
received by FUs, which use the execution result in
the next cycle. In this case, the execution result C is
received by FU(1, 1), which uses it in the next cycle.
In contrast, I1 on FU(1, 0) is not executed, because its
source operand C has not yet been executed, and the
other source operand D is fed to the next stage.

• Cycle 2: Figure 3c shows the cycle that follows the
cycle shown in Figure 3b. In Figure 3c, I0 and I1 are
moved to the second stage, and I2 and I3 are fed to the
first stage. I0 on FU(0, 1) does nothing in this cycle
because it has already been executed in the previous
cycle. I1 on FU(1, 1) is executed in this cycle because
the source latch has the source operand C executed in
the previous cycle. The execution result E is received
by FU(0, 1), which uses it and executes I2 in the next
cycle. I2 on FU(0, 0) and I3 on FU(1, 0) are not
executed, because their source operands have not yet
been executed.

• Cycle 3: Figure 3d shows the next cycle. I2 and I3 are
moved to the second stage. I2 on FU(0, 1) is executed
in this cycle and outputs the execution result G. I3 on
FU(1, 1) is not executed in the IXU, because its source
operand G has not yet been executed in this cycle.



F
U

F
U

F
U

F
U

(0, 0) (0, 1)

(1, 1)(1, 0)

(a) Datapath

(0, 0)

(1, 0)

(0, 1)

(1, 1)

F
U

F
U

F
U

I
1
: E←C+D

I
0
: C←A+B

F
U

A

B

C

D

(b) Cycle 1 Behavior

F
U

F
U

F
U

I
1
: E←C+D

I
0
: C←A+BI

2
: G←E+F

C

(1, 0)

(0, 1)

(1, 1)

F
U

I
3
: I←G+H

(0, 0)
C

D

F

E

(c) Cycle 2 Behavior

F
U

F
U

F
U

I
2
: G←E+F

E

(1, 0)

(0, 1)

(1, 1)

F
U

F

I
3
: I←G+H

(0, 0)

G

(d) Cycle 3 Behavior

Figure 3: In-order execution unit.
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Figure 4: Code executed in IXU.

The IXU leverages FUs serially placed over multiple
stages and can execute dependent instructions, such as the
instructions from I0 to I2. In contrast, the IXU cannot
execute instructions after a long and consecutive chain of
dependent instructions, such as I3. However, an IXU can
execute instructions in a dependent chain when the length
of the chain is long but the chain is not consecutive. For
example, if there is an independent instruction between I2
and I3 shown in Figure 4, the IXU can execute I3, because
I3 can use the execution result of I2 in the next cycle of the
cycle shown in Figure 3d. Generally, dependent instructions
are rarely placed in a long and consecutive chain3, and
consequently, an IXU can execute many instructions.

2) Control of IXU: The control of an IXU, that is, the de-
cision as to which FU executes an instruction and the control
of operand-bypassing, is determined by comparing register
numbers in the same way as operand-bypassing is conducted
in conventional superscalar processors. The control signals
are generated in parallel with renaming and register read,
because this process uses logical register numbers, which
can be used after decoding. The generated control signals
and instructions are fed to the IXU, and the fed signals
control the FUs and the bypass network. Consequently, the
critical path is not prolonged by the generation of the control
signals.

D. Behavior when Executing Other Instruction Types

We described the behavior of FXA that executes integer
instructions. In this section, we describe its behavior when
executing other types of instructions.

3Therefore, in-order superscalar processors have a higher performance
than do scalar processors.

1) Branch: In the same way as it executes integer in-
structions, the IXU executes branch instructions. The FU in
the IXU compares a branch prediction result and a branch
executed result, and then, detects a branch misprediction. If
a branch misprediction is detected, the pipeline is flushed
and recovered at this time.

2) Floating Point: The IXU does not have floating point
(FP) units for avoiding area overhead increase and perfor-
mance degradation due to a prolonged pipeline length. The
latency of FP operations generally constitutes multiple cy-
cles, and hence, the pipeline length is significantly prolonged
if multiple FP units are serially placed.

3) Load/Store: FXA assumes a scheme that issues
loads/store instructions speculatively using a dependency
predictor [4], [11], such as the store-set predictor [4]. In this
scheme, load/store instructions are issued not from the LSQ
but from the IQ. The following part briefly describes how
this scheme executes load/store instructions. 1) After a load
instruction is issued, this scheme searches the LSQ using
the address of the load instruction. If a predecessor store
instruction with the same address is detected and has already
been executed, its data is forwarded to the load instruction.
At the same time, its data address is written to the LSQ. 2)
After a store instruction is issued, this scheme searches the
LSQ using the address of the store instruction. If a successor
load instruction with the same address is detected and has
already been executed, an order violation is detected. At the
same time, its data address and data are written to the LSQ.

The IXU executes load/store instructions according to
results of the arbitration of resources between the IXU
and the OXU4. These resources are the LSQ and the L1
data cache. In this arbitration, instructions in the OXU
have higher priority than those in the IXU. If the arbiter
determines that instructions cannot be executed in the IXU,
they are simply dispatched to the IQ. Thereby, the pipeline
is not stalled in this case, and the performance degradation
is small.

4When the IXU executes store instructions, stored data are written to the
LSQ only, in much the same way as in conventional superscalar processors,
and then, stored data are written to the data cache in the commit stages.



In FXA, the LSQ itself is not different from that of
conventional superscalar processors. The differences are that
the LSQ is accessed by both the IXU and the OXU and the
processes of the LSQ are partially omitted as follows:

1) Omitting Order Violation Detection: When a store
instruction is executed in the IXU, there is no succes-
sor load instruction that has already been executed.
Consequently, in this case, an order violation never
occurs, and the search in the LSQ can be omitted.

2) Omitting Load Instruction Writing: When a load
instruction is executed in the IXU and all its prede-
cessor store instructions have already been executed,
an order violation caused by the load instruction
never occurs. This is because the predecessor store
instructions and the load instruction are executed in-
order. Consequently, it is not necessary to detect an
order violation caused by the load instruction, and
writing the load instruction to the LSQ can be omitted.

These omission reduces the energy consumption of the
LSQ, as described in Section V-D.

III. DETAILED DESIGN AND OPTIMIZATION

In this section, we describe the design of FXA in detail
and its optimization for mitigating complexity.

A. Operand Bypassing

In this section we describe the design of the bypass
network in detail and discuss its complexity.

1) Bypassing between IXU and OXU: Between the IXU
and the OXU, data are communicated only through the PRF,
and there is no other datapath between them. The following
description describes the reasons for the absence of operand-
bypassing between the IXU and the OXU for each direction.

• IXU → OXU: It is not necessary to bypass data
from the IXU to the OXU. The IXU and the OXU
have an order relation, as instructions not executed
in the IXU go into the OXU, as shown in Figure 2.
Consequently, when instructions are executed in the
IXU, their consumers are not in the OXU, and it is
not necessary to pass the execution results to the OXU.

• OXU → IXU: We omit the operand-bypassing from
the OXU to the IXU because the performance degra-
dation caused by this omission is negligible. Between
the IXU and the OXU, there are the IQ and several
pipeline stages. Thus, instructions executed in the IXU
are distant from instructions executed in the OXU in
a program order, and the probability that they have
dependencies is low. Consequently, if execution results
cannot be passed directly from the OXU to the IXU,
the number of affected instructions is small, and thus,
performance degradation is not significant.

The operand-bypassing of the IXU and the OXU are
separated, and its complexity and energy consumption are
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Figure 5: Bit-slice of bypass network.

similar to those of the bypass network in conventional
superscalar processors, as described below.

2) Optimization of IXU: When FUs are placed over
multiple stages in the IXU, the latency of its bypass network
is increased, and operand-bypassing and the operation of an
FU may not be completed in one cycle.

To mitigate its complexity, we decrease the number of
FUs in the backward stages in the IXU. The number
of instructions executed in the backward stages in the
IXU is relatively small, and thus decreasing the number
of the FUs in the backward stages does not significantly
degrade performance. The evaluation results presented in
Section VI show that the performance of a configuration
with 3ways× 1stage+1way× 2stages = 5 FUs is almost
same as that of a configuration with 3ways× 3stages = 9
FUs.

Additionally, we partially omit operand-bypassing in the
IXU. As described in Section II-C, instructions that are
mutually distant are executed on FUs that are distant. Conse-
quently, operand-bypassing for FUs that are distant seldom
occurs. The evaluation results presented in Section VI show
that performance degradation is negligible when operand-
bypassing between FUs that are more distant than two stages
is omitted.

3) Complexity of IXU: In this section, we discuss the
complexity of the bypass networks in FXA. The bypass
network in the IXU has a structure similar to that of
the bypass network of conventional superscalar processors.
The main components of both bypass networks are result
wires for broadcasting execution results and multiplexers
for selecting operands [16]. Figure 5 shows the layout of
the bypass network [16], [24] that we assume in this paper.
This figure shows a bit-slice of the datapath. There are n FUs
in the IXU, which are from iFU0 to iFUn−1, and m FUs in
the OXU, which are from oFU0 to oFUm−1. These FUs are
placed on both sides across the PRF. Each FU broadcasts its
execution result over a result wire, and the result is selected
by multiplexers and received by FUs that execute consumers.
As described in Section III-A1, operands are not bypassed
between the IXU and the OXU, and thus, the result wires
of the IXU and the OXU are mutually independent.

The latency of a bypass network is determined mainly
by the length of its result wires and the number of its
multiplexer inputs. The length of result wires is proportional
to the number of FUs, when the layout is as illustrated in
Figure 5. The maximum number of multiplexer inputs is the



number of result wires, and thus, it is proportional to the
number of FUs. The number of FUs is n = 5 in the con-
figuration used in the evaluations presented in Section VI.
Consequently, the latency of the bypass network in the IXU
is not significantly different from that of the bypass network
in 4-issue conventional superscalar processors.

B. Physical Register File

In the layout presented in Figure 5, the IXU and the OXU
are directly placed on both sides of the PRF, and thus, the
IXU and the OXU can access the PRF with short latency.
The bitlines of the PRF are placed horizontally in this figure.
For the PRF ports shared by the IXU and the OXU, sense-
amps are placed on both ends of the bitlines, and they supply
values to the IXU and the OXU. Consequently, the IXU and
the OXU can access the PRF with a latency that is similar
to that of the PRF of conventional superscalar processors,
and shared ports do not increase its latency.

The additional sense-amp does not significantly increase
the latency of the PRF. A bitline is generally connected to
two transistors that a sense-amp consists of[23]. The para-
sitic capacitance of the two transistors is significantly smaller
than that of the bitline and the access transistors of RAM
cells. Consequently, the additional parasitic capacitance does
not significantly increase the latency of the PRF.

When the PRF is read in the front end, invalid entries
that have not yet been written may be read, and these reads
increase its energy consumption. To mitigate this problem,
the scoreboard (Section II-A) is read before the PRF is read,
and then, the PRF is read only when values in the PRF
are available. This sequential access makes it possible to
reduce the energy consumed by invalid reading. Although
the latency of the scoreboard is very small, because its
capacity is much smaller than that of the PRF, this sequential
access may prolong the critical path. For this reason, an
additional stage is added to the front end in the evaluations
presented in Section VI.

Note that, in this paper, we assume that the ports of the
PRF are partially shared by the IXU and the OXU, but even
though the ports are not shared for avoiding arbitration, the
number of the ports is not significantly increased. This is
because the number of the ports of the PRF required for
the IXU is increased, but that required for the OXU is
decreased. Moreover, methods that reduce the complexity of
the PRF, such as a hierarchical PRF[5], [19], can mitigate
the complexity of the increased ports.

C. Scoreboard

FXA reads the scoreboard twice per instruction to provide
correct execution. The first reading is carried out before
instructions go into the IXU (Section II-B), and the second
reading is carried out in a dispatch stage (Section II-A).
These two readings cannot be combined into one time. This
is because there is a possibility that a not ready instruction

that goes through the IXU as NOPs becomes ready when
its producer is executed in the OXU at the same time. If
such instructions are dispatched to the IQ as not ready,
their operands are never woken up, and the processor cannot
continue execution correctly. The second reading from the
scoreboard makes it possible to dispatch such instructions
as ready correctly.

IV. PERFORMANCE OF FXA

In this section, we describe the instructions that can be
executed in IXU, and then, the performance of FXA.

A. Instructions Executed in IXU

As described in Section II, instructions executed in the
IXU are categorized as:

(a) Instructions that are already ready when they are
entered to the IXU. All their source operands have
already been obtained from the PRF.

(b) Instructions that become newly ready in the IXU. They
receive execution results executed in the IXU, and all
their source operands are complete in the IXU.

The number of (a), which comprise mainly instructions
dependent only on registers that have not been updated for
a long time, is small. Using the configuration used in the
evaluation presented in Section VI, the ratio of the number
of (a) to the number of all executed instructions is 5.5%
on average. In contrast, the number of (b) is large, and
instructions executed in the IXU comprise mainly (b) . The
evaluation results presented in Section VI show that the
IXU with one-stage FUs can execute 35% of instructions.
Moreover, FXA can execute more instructions by serially
placing FUs over multiple stages in the IXU, as described
in Section II-C. This makes it possible to increase the
number of (b) significantly. The evaluation results presented
in Section VI show that an IXU with three-stage FUs can
execute 54% of instructions.

B. Performance Improvement

FXA improves the performance as compared to conven-
tional superscalar processors. This improvement is achieved
as a result of the FUs added in the IXU and the reduced
branch misprediction penalty.

1) Effects of FUs in IXU: In FXA, the number of FUs
is increased as compared to that in conventional superscalar
processors, because the IXU is added. If the IXU executes
many instructions, FXA can improve performance in a man-
ner similar to that used to widen its issue width. For example,
with the configurations used in the evaluation presented
in Section VI, the conventional superscalar processor can
execute up to four instructions per cycle. In contrast, FXA
can execute up to seven instructions per cycle with an OXU
of two-instruction issue width and an IXU with five FUs.

Moreover, the instructions executed in the IXU are not
dispatched to the OXU, and thus, other instructions can



use IQ entries and the issue ports that are supposed to be
used by the instructions executed in the IXU. The OXU
is shrunken to the degree at which performance is not
significantly decreased in all applications, and consequently,
FXA improves performance in applications where the IXU
can execute many instructions.

In FP applications, integer instructions that are executed in
the IXU are not dispatched to the OXU, and thus, FXA also
improves performance, as shown in the evaluation results
presented in Section VI. This is because FP applications
still include many integer and load/store instructions 5.

2) Reducing Branch Misprediction Penalty: FXA can
execute branch instructions and detect branch misprediction
in the IXU (Section II-D). If a misprediction is detected in
the IXU, the misprediction penalty is reduced, because the
IXU is placed at the front end. Recent superscalar processors
have pipelines with more than 10 stages [20], [3], [14], and
thus, their branch misprediction penalty is also more than 10
cycles. In FXA, if a misprediction is detected in the IXU,
its misprediction penalty is reduced by approximately half.

In contrast, if a misprediction is detected in the OXU,
the misprediction penalty is increased by the number of the
stages of the IXU, which is usually four or five, because its
pipeline length is prolonged. However, more than 50% of
instructions are executed in the IXU (Section VI), and thus,
the total penalty is reduced.

V. REDUCING ENERGY CONSUMPTION

In this section, we describe how FXA reduces energy
consumption. The energy consumption reduction of FXA is
based on the following: 1) the IXU does not significantly in-
crease energy consumption; and 2) the energy consumption
of the IQ and the LSQ is reduced.

A. IXU
The energy consumption of the IXU comprises mainly

that of the FUs and the bypass network. This section
describes the energy consumption of these components.

1) Functional Units: The dynamic energy consumption
of the FUs is determined by 1) the dynamic energy con-
sumption of each FU per access, and 2) the number of its
accesses. 1) The dynamic energy consumption of each FU
per access in FXA and conventional superscalar processors
is the same, because their FUs are exactly the same. 2) The
numbers of accesses to the FUs in FXA and conventional
superscalar processors are not significantly different, because
all instructions using FUs are executed once on any FU. The
total dynamic energy consumption is calculated from the
product of 1) and 2), and consequently the total dynamic
energy consumption of the FUs in FXA is not significantly
different from that of the FUs in conventional superscalar
processors.

5Using the configuration used in the evaluation presented in Section VI,
in SPECCPU FP 2006 applications, the average ratio of FP instructions in
all executed instructions is 30.8% and the maximum is 52.0%.

Adder Shifter

Functional Unit

pass throughFU inputs

Logic

Unit

Figure 6: Functional Unit in IXU

It should be noted that FUs do not consume dynamic
energy when instructions go through on the FUs in the IXU
as NOPs. Figure 6 shows a block diagram of the FUs in
the IXU. The FU in this figure has a structure where the
outputs of several units, such as the adder and the shifter,
are selected by the multiplexer [24]. When source operands
or execution results are sent to the next stage in the IXU,
the path for passing through in the right hand side of the
figure is used and data are selected by the multiplexer. In
this case, the source latches of the FU are controlled such
that they are not updated, and thus switching does not occur
in the FU, and the FU does not consume dynamic energy.

The static energy consumption is increased by the addi-
tional FUs in the IXU, but this increase is relatively small
and does not cause a serious problem. The static energy
consumption is proportional to the number of transistors in
a circuit, and transistors in fast circuits such as FUs consume
larger amount of static energy. However, the number of the
transistors in the integer FUs for the IXU is much smaller
than that of the transistors of other circuits, and thus, its
static energy is relatively small. For example, integer adder,
which occupies most of the circuit area of an integer FU,
comprises 4k − 6k transistors [10], [22]. In contrast, an FP
multiplier and an FP adder, which require fast transistors as
integer FUs, comprise over 200 k transistors[22], which is
several tens times of that in integer adders. Consequently,
the static energy consumed by the few integer FUs for the
IXU is negligible.

2) Bypass Network: The energy consumption of the by-
pass network in FXA is not significantly different from that
in conventional superscalar processors. This is because the
energy consumption is increased by the bypass network in
the IXU, but the energy consumption of the bypass network
in the OXU is reduced.

As described in Section III-A, the bypass networks in
the IXU and the OXU comprise mainly result wires and
multiplexers6. In the bypass networks, energy is consumed
mainly for driving the result wires. Each FU executes an
instruction and drives its own result wire. At this time, en-
ergy is consumed proportionally to the parasitic capacitance
of the result wire; the parasitic capacitance is proportional
to the length of the result wire. The length of the result
wire is proportional to the number of the FUs in the layout
shown in Figure 5. Consequently, the energy consumption

6The result wires of the IXU and the OXU are separated (Section III-A).



is proportional to the number of FUs.
On the basis of this assumption, we compare the energy

consumption of the bypass networks. When the configu-
rations used in the evaluation presented in Section VI are
used, in FXA, the IXU has n = 5 FUs and the OXU has
m = 4 FUs. In this configuration, over 50% of instructions
are executed in the IXU, and thus, the energy consumption of
the bypass network in the IXU is proportional to the average
of n = 5 and n = 4, which is n = 4.5. Consequently,
the energy consumption per bypassing in the IXU does not
increase significantly as compared to that of conventional
superscalar processors (m = 4)7.

It should be noted that some result wires in the IXU are
short, because it is not necessary for each instruction to
send its execution result to its predecessor according to the
program order. Moreover, as described in Section III-A2, the
operand-bypassing in the IXU is partially omitted, and this
makes it possible to reduce the length of the result wires.
Consequently, the actual energy consumption of the bypass
network is smaller than that assumed in the above discussion.

B. Physical Register File

The energy consumption of the PRF is determined by 1)
the energy consumption of each PRF per access, and 2) the
number of its accesses.

1) The energy consumption of each PRF per access in
FXA and conventional superscalar processors is not signifi-
cantly different, because the areas of their PRFs are almost
the same. This is because the number of the ports of the
PRF required for the IXU is increased, but that required
for the OXU is decreased. For example, both the PRFs
of the conventional superscalar processor in Figure 1 and
FXA in Figure 2 have nine ports. Moreover, the ports of the
PRF are partially shared by the IXU and the OXU, and the
IXU accesses the shared ports only when the OXU does not
access them, as described in Section II-A. As a result, the
number of the ports of the PRF in FXA is not different from
that in conventional superscalar processors.

2) The numbers of accesses to the PRF in FXA and
conventional superscalar processors are not significantly
different, because all instructions access the PRFs once.

The total energy consumption is calculated from the
product of 1) and 2), and consequently, the total energy
consumption of the PRFs of FXA and that of conventional
superscalar processors are not significantly different.

The capacity of the scoreboard is significantly smaller
(1/64) than that of the PRF, and consequently, the energy
consumption of the scoreboard is negligible.

C. Issue Queue

In FXA, the energy consumption of the IQ is significantly
reduced as compared to that of a conventional superscalar

7All these FUs are integer FUs.

processor. FXA reduces the capacity and the issue width
of the IQ without performance degradation being incurred,
because the IXU can execute many instructions.

The IQ comprises mainly CAMs and RAMs, with the
number of the ports being proportional to the issue width.
Their energy consumption (and area) is proportional to the
number of their ports and their capacities [23]. Consequently,
the reduction in the capacity and issue width significantly
reduces the energy consumption of the IQ per access.
Moreover, the number of the accesses is also significantly
reduced, because instructions executed in the IXU are not
dispatched to the OXU. The evaluation results presented
in Section VI show that the energy consumption of the
IQ is reduced to 14% of that of the IQ of a conventional
superscalar processor.

D. Load/Store Queue
The LSQ also comprises mainly CAMs and RAMs, and

it consumes a large amount of energy. As described in
Section II-D3, FXA partially omits processing in its LSQ.
The LSQ in FXA is not different from that in conventional
superscalar processors, but the number of accesses is re-
duced by omitting the processing. Consequently, the energy
consumption of the LSQ is reduced.

VI. EVALUATION

We evaluated FXA and other processor architectures.

A. Evaluation Environment
We evaluated IPCs using an in-house cycle-accurate pro-

cessor simulator. We used all the programs from the SPEC

Table I: Processor Configurations

BIG HALF LITTLE
type out-of-order ← in-order
fetch width 3 inst. ← 2
issue width 4 inst. 2 inst. 2
issue queue 64 entries 32 entries N/A
FU (int, mem, fp) 2, 2, 2 ← 2, 1, 1
ROB 128 entries ← N/A
int/fp PRF 128/96 entries ← N/A
ld/st queue 32/32 entries ← N/A
branch pred. g-share, 4K PHT, ← ←

512 entries BTB
br. mispred. penalty 11 cycles ← 8 cycles
L1C (I) 48 KB, 12 way, ← ←

64 B/line, 2 cycles
L1C (D) 32 KB, 8 way, ← ←

64 B/line, 2 cycles
L2C 512 KB, 8 way, ← ←

64 B/line, 12 cycles
main mem. 200 cycles ← ←
ISA Alpha ← ←

Table II: Device Configurations

technology 22 nm, Fin-FET[18]
temperature 320 K
VDD 0.8 V
device type (core) high performance (I off: 127 nA/um)
device type (L2) low standby power (I off: 0.0968 nA/um)
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Figure 7: IPC relative to BIG.

CPU 2006 benchmark suites [21] with ref data sets. The
programs were compiled using gcc 4.5.3 with the “-O3” op-
tion. We skipped the first 4G instructions and evaluated the
next 100 M instructions. We evaluated energy consumption
and chip areas using the McPAT simulator [15] with the
parameters shown in Table II.

B. Evaluation Models
We evaluated the following models whose configurations

are based on those used in most ARM big.LITTLE archi-
tecture, which consists of ARM Cortex-A57 [3] and Cortex-
A53 [13]. Table I shows the detailed parameters of the
evaluated models.

• BIG: BIG is the baseline model of this evaluation. It is
an out-of-order superscalar processor. Its major micro-
architectural parameters are the same as those of ARM
Cortex-A57, which include parameters such as fetch
width, issue width, the size of an instruction window,
the number of FUs, cache sizes, and branch predictors.

• HALF: This model has an IQ whose issue width and
capacity are half those in BIG. Its other parameters are
the same as BIG.

• LITTLE: This is a model of an in-order processor.
Like BIG, its major micro-architectural parameters are
the same as those of ARM Cortex-A53.

• HALF+FX: This is a model of FXA. The other
elements of an IXU are basically the same as those
of HALF, but the number of the ports of the PRF is
the same as that of BIG. The ports of the PRF shared by
the IXU and the OXU are accessed as described in Sec-
tion III-B. The IXU has three stages and five FUs (the
first stage has three FUs, and the second and third stage
each have one FU). As described in Section III-A2,
operand bypassing from the third stage to the first stage
in the IXU is omitted. This configuration of the IXU has
the highest performance among configurations whose
bypass network complexity is similar to that of the
bypass network in BIG. It is determined on the basis
of the discussion about complexity in Section III-A.

• BIG+FX: This is a model of FXA. It has an IQ whose
issue width and capacity are the same as BIG. Its other
parameters are the same as those of HALF+FX.

Through the evaluation of these models, we show that
HALF+FX achieves both a higher performance and lower
energy consumption than BIG.

C. IPC

Figure 7 shows the IPCs for each model relative to BIG.
HALF+FX improves the IPC of BIG by 5.7% on geometric
mean. The IPC improvement of HALF+FX in the INT
benchmark programs is significant; the maximum improve-
ment is 67% for libquantum and the geometric mean is
7.4%. The IPC of HALF+FX in FP benchmark programs
is also improved: it is 4.5% on geometric mean. These IPC
improvements are achieved because many instructions are
executed in the IXU. The rates of instructions executed in
the IXU are 61%, 51% , and 54% in the INT benchmark
group, FP benchmark group, and all benchmark programs,
respectively.

In libquantum and gromacs, HALF+FX significantly
improves the IPC compared with BIG. This is because
HALF+FX can execute more INT operations compared with
BIG in a single cycle. In this case, the term “INT operations”
include logical, add/sub, shift, and branch instructions and
not include load/store instructions. In BIG, the maximum
number of INT operations executed in a single cycle is
two operations because the number of INT FUs is two.
In contrast, HALF+FX can execute upto seven INT oper-
ations in a single cycle8. libquantum and gromacs include
significantly more INT operations (over 80%) than the
other applications include (50% on average). Consequently,
HALF+FX with high INT-operation-throughput significantly
improves performance in the programs9.

The IPC degradation of HALF as compared to BIG is
significant: 16% on geometric mean. This is because the
width and size of IQ in HALF are half of those in BIG.

HALF+FX improves the IPC as compared to HALF by
27% on geometric mean, which is significant, although
HALF+FX has the same IQ as HALF. HALF+FX can be
considered to be the combination of HALF and an additional

8It can execute five operations steadily in a single cycle.
9This high INT-operation-throughput is achieved by the IXU without

widening the width of the IQ (Section IV-B1).
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Figure 9: Circuit area relative to BIG.

IXU. This shows that the addition of the IXU significantly
improves the IPC, as described in Section IV-B.

The improvement of the IPC by BIG+FX as compared
to HALF+FX is slight 1.8% on geometric mean. This is
because the IXU executes sufficient instructions and the
number of instructions fed to the OXU is small. As a result,
the increase in the width/size of the IQ does not significantly
improve the IPC.

LITTLE significantly degrades the IPC as compared to
the other models, because LITTLE is an in-order superscalar
processor. The IPC degradation of LITTLE as compared to
BIG is 40% on geometric mean.

D. Energy Consumption

Figure 8a shows the energy consumption for each model
relative to BIG. This energy consumption is the sum of static
and dynamic energy consumption. In the graph, “FUs” is the
energy consumption of the FUs and the bypass network in
the OXU. Similarly, “IXU” is the energy consumption of the
FUs and the bypass network in the IXU. “OTHERS” is the
energy consumption of the other units, such as TLBs, fetch
queues, and branch predictors.

HALF+FX reduces the energy consumption as compared
to BIG and HALF by 17% and 3.3%, respectively. This is
mainly because the energy consumption of the IQ and the
LSQ is reduced, as described in Section V. In particular, the
energy consumption of the IQ is significantly reduced. The
energy consumption of the IQ in HALF+FX is reduced to
14% and 42% of those in BIG and HALF, respectively. The
energy consumption of the IQ in HALF+FX is also reduced
as compared to that in HALF, although HALF+FX and
HALF have the same IQ, whose width/size is half of that in
BIG. This is because the number of instructions dispatched
to the IQ is reduced by the execution of instructions in the
IXU. The energy consumption of the LSQ in HALF+FX is
reduced to 77% of that in BIG, and its effect is small com-
pared with the case of the IQ. This is because all processes
of the LSQ are not omitted when load/store instructions are
executed in the IXU, as described in Section II-D3. The
energy consumption of the FUs and the bypass network in
HALF+FX is increased by 9.3% as compared with that in
BIG, but this increase in energy consumption is smaller than

the energy consumption decrease effected by the IQ and the
other parts. This detailed energy consumption of the FUs and
the bypass network is discussed in Section VI-E. The energy
consumption of the other parts in HALF+FX is slightly
smaller than those in BIG, because HALF+FX improves its
performance, and thus, static energy consumption is reduced.

BIG+FX reduces the energy consumption as compared
to BIG by 8.7%. Although BIG+FX has the same OXU as
BIG, the energy consumption is reduced. This is because
the number of instructions fed to the OXU is reduced as
compared to BIG.

The energy consumption of LITTLE is much smaller than
that of the other models: 60% and 71% of those of BIG and
HALF+FX, respectively.

It should be noted that the energy consumption of the L2
cache is very small in all the models because we use Fin-
FET technology and low-standby-power transistors for the
L2 caches as shown in Table II. Fin-FET technology sig-
nificantly reduces leakage current[2]. Furthermore, leakage
current of low-standby-power transistors used in L2 caches
is considerably small compared to that of high-performance
transistors used in the cores, as shown in Table II. Thus, the
static energy consumption of the L2 caches is very small.
The dynamic energy consumption of the L2 caches is also
small, because the hit rates of L1 data caches are more than
95% on average in all the models, and thus the number of
accesses to the L2 caches is small.

E. Energy Consumption of FUs and Bypass Networks

Figure 8b shows the energy consumption of the FUs and
the bypass network for each model relative to BIG. In the
graph, “dy.” and “st.” are the dynamic and static energy
consumption of each module, respectively . In HALF+FX,
the energy consumption of the FUs and the bypass network
in the OXU is reduced as compared to those in BIG and
HALF, but the energy consumption of the IXU is increased.
This increase is due mainly to the static energy consumption
of the FUs in the IXU. As a result, the energy consumption
of the FUs and the bypass network in HALF+FX is increased
by 9.4% as compared with that in BIG, but this does not
cause a serious overall problem as described above.
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The static energy consumption of the IXU is small,
because the area of the IXU is small and the number of
the transistors that the IXU comprises is small, as described
in Sections V-A1 and VI-F.

In LITTLE, the energy consumption of the FUs and the
bypass network is smaller than that of the other models. This
is because LITTLE does not perform out-of-order execution,
and thus, the number of instructions uselessly executed and
flushed on branch misprediction is significantly smaller than
that of the other models. The energy consumption of the FUs
and the bypass network in HALF is reduced to 92% of that
in BIG, for the same reason as in LITTLE. The number of
instructions speculatively executed in HALF is smaller than
that in BIG because the IQ is shrunk.

F. Circuit Area

We evaluated the circuit areas of the models. Figure 9a
shows the areas of a whole processor for the other models
relative to that of BIG. The labels in this figure are the
same as in Figure 8a. The areas of the several units shown
in the upper part of Figure 9a are not clear to see, and
thus, Figure 9b shows the areas of those units10. The area
of HALF+FX is increased by the addition of the IXU,
as shown in Figure 9b. However, the area of the IXU is
significantly smaller than that of the whole processor, as
shown in Figure 9a, and consequently, the area of HALF+FX
is slightly bigger than that of BIG; the area growth is 2.7%.
These results support that the number of the transistors in
the IXU is small compared to that of transistors in the
whole processor (Section V-A1), and thus, the static energy
consumption of the IXU is small, as described above. In all
the models, an L2 cache and FP units occupy a large area.
In HALF+FX, the areas of the L2 cache and FP units are
44% and 24% of the entire area, respectively. These units
are basically the same in all the evaluated models except
LITTLE11, and thus, their areas are the same.

10The area of the IQ in HALF and HALF+FX is significantly smaller
than that in BIG because both the width and capacity are decreased
(Section V-C).

11LITTLE has fewer FP units than the other models.

G. Performance/Energy Ratio

In this section, we show the performance/energy ratio
(PER) of each model, which is equal to the inverse of the
energy-delay product (EDP). Figure 10 shows the PER of
each model relative to that of BIG. In the figure, it can be
seen that HALF+FX improves the PER as compared to BIG
and LITTLE by 25% and 27%, respectively. This high PER
is achieved because HALF+FX improves both the IPC and
energy consumption.

H. Sensitivity

In this section, we describe the sensitivity of HALF+FX
to variations in the the IXU.

1) Optimization of IXU: We evaluated the effect of
the optimization of the IXU described in Section III-A2.
Figure 11 shows the IPCs of HALF+FX compared to that
of the HALF+FX with nine FUs over three stages and the
full bypass network. The “full” line shows the results of
HALF+FX with the full bypass network, and the “opt” line
shows those with the bypass network that omits operand-
bypassing between FUs that are more distant than two
stages. The horizontal-axis shows the number of the FUs
in each stage of the IXU. For example, “[3,1,1]” shows
that the first stage has three FUs, and the second and third
stage each has one FU. The performance degradation of
the model with [3,1,1] and opt, which is used in the other
evaluations, is only 0.5% as compared to the model with
nine FUs and the full bypass network. These results show
that the performance degradation caused by the optimization
described in Section III-A2 is negligible.

2) Function Units Stages in IXU: We evaluated
HALF+FX while varying the FUs depth in the IXU from 1
to 6. It should be noted that the optimization of the IXU de-
scribed in Section III-A2 is not applied to HALF+FX in this
section. Figure 12 shows the rate of instructions executed
in the IXU relative to all executed instructions (hereafter,
in this section, “executed rate” refers to this rate). Each
line in Figure 12 shows the executed rate of the geometric
mean of the INT benchmark group, FP benchmark group,
and all benchmark programs, respectively. Figure 12 shows
that the executed rate increases with the increase in the



depth. The figure shows that HALF+FX can execute many
instructions, and that with the one-stage IXU it executes
35% of instructions on geometric mean. HALF+FX with
the three-stage IXU executes more than half of instructions;
the executed rate is 54%. The executed rate in the INT
benchmark group is significantly higher than that in the FP
benchmark group. The executed rates for the INT and FP
benchmark groups in HALF+FX with the three-stage IXU
are 61% and 51%, respectively. This difference is due to the
IXU not having FP units, as described in Section II-D.

Similarly, Figure 13 shows the IPC of HALF+FX relative
to that of BIG when the FUs’ depth is varied. This figure
shows that the IPC increases with the increase in the depth.
When the depth constitutes more than three stages, the IPC
increase per one depth is less than 1%. This is because, if
the issue width of the OXU is sufficient, the effect of an
IXU, similarly to widening the issue width (Section IV-B1),
does not improve performance.

I. Evaluation Summary and Discussion

The above evaluation results shows that FXA achieves
performance improvements of 5.7% relative to the conven-
tional out-of-order superscalar processor (big core), while
reducing the energy consumption 17%. The PER of FXA is
25% higher than that of the big core and 27% higher than
that of the conventional in-order superscalar processor (little
core).

FXA has better PER compared with both of the big and
little cores, but FXA core cannot replace both of the big
and little cores. This is because the energy consumption of
the little core for processing a single instruction is always
smaller than that of the FXA and big cores. For processing
a single instruction, the little core consumes energy for
steps such as fetch, decode, register access and execute.
In contrast, the FXA and big cores consume energy for
additional steps such as rename and scheduling in addition
to the energy consumed in the little core, and consequently,
the energy consumption of the FXA and big cores is always
bigger than that of the little core. Thus, the little core
is useful when the smallness of energy consumption is
important and high-performance is not important.

Our goal is not to replace both of the big and little cores
by FXA cores but rather to replace only the big core by
FXA core. In this way, enjoying the energy optimization
of big.LITTLE, application programs that require high-
performance of big cores can be executed with lower energy
consumption.

VII. RELATED WORK

We describe works related to our proposed method in this
section.

A. Clustered Architecture

Both FXA and clustered architecture (CA), such as Alpha
21264 [11], have multiple execution units. The major differ-
ence between them is that the clusters in CA do not have
an order relation, but the IXU and the OXU in FXA have
an order relation as instructions not executed in the IXU go
into the OXU. Consequently, FXA is simpler than CA as
follows:

• Operand Bypassing and Wakeup: It is necessary to
bypass operands and wakeup instructions between the
clusters in CA [11], and they require additional data-
path and wakeup ports. These operand bypassing and
wakeup operations are performed across the clusters,
and thus, additional latencies are required. In contrast,
it is not necessary to bypass operands and wakeup
instructions between the IXU and the OXU, because
they have order relation, as described in Section III-A1.

• Instruction Steering: For mitigating additional latencies
for communication between the clusters, the method
used for steering instructions to the clusters for CA
[16]. If there is a CA with in-order/out-of-order clusters
and instructions that remain not executed for long
time are steered to the in-order cluster, and then, its
performance is significantly decreased. Consequently,
more careful instruction steering and a complex logic
are required. In contrast, the IXU and the OXU in FXA
have an order relation, and consequently, instruction
steering is not necessary.

As described above, FXA is simpler than CA, and more-
over, FXA has more FUs than CA. As a result FXA has
a higher performance and lower energy consumption than
does CA.

B. Reducing Issue Queue Complexity

For directly reducing the complexity of an IQ, Forward-
flow [7] was proposed. In Forwardflow, instructions are
directly woken up through pointers, and thus, it omits CAMs
or dependency matrices, and its energy consumption is
therefore reduced.

As an approach that focuses on the number of source
operands, Half Price Architecture [12] was proposed. Half
Price Architecture focuses on the fact that many instructions
have fewer than two source operands, and reduces the
number of the ports of the wakeup logic and the register
file.

Both the approaches proposed in these related studies and
FXA reduce the complexity of the IQs. The major difference
between them is that FXA reduces its energy consumption
by executing instructions in the IXU and reducing the num-
ber of instructions dispatched to the issue queue. Moreover,
these approaches can be applied to the IQ in FXA, and
energy consumption is reduced further if they are combined.



C. Processing Instructions in Front End

RENO (RENaming Optimizer) [17] reduces the complex-
ity of an execution core by removing irrelevant instructions
on register renaming. It dynamically performs optimiza-
tion, such as move elimination and common subexpression
elimination. Both RENO and FXA reduce the number of
instructions dispatched to the execution core by processing
instructions in the front end. The major difference between
RENO and FXA is that RENO reduces the number of
executed instructions itself by optimization in the front end,
and FXA actually executes instructions in the front end.
Optimization in RENO is implemented by modifying the
renaming logic, and thus, this optimization can be imple-
mented in FXA, and improved results can be achieved by
combining them.

VIII. CONCLUSION

Smart phones and tablets have recently become
widespread and dominant in the computer market, and major
developers have adopted out-of-order superscalar processors
for these mobile devices. However, out-of-order superscalar
processors consume much more energy than in-order super-
scalar processors. In this paper, we proposed FXA, which
has two execution units, the IXU and OXU. The simple
IXU operates as a filter for the complex OXU by executing
instructions in the front end. The IXU executes many in-
structions and reduces the number of instructions dispatched
to OXU. This makes it possible for FXA to achieve both
a high performance and low energy consumption. In a
comparison with the models based on ARM big.LITTLE
architecture, the evaluation results show that FXA achieves
a 5.7% higher performance, 17% lower energy consumption,
and 25% higher performance/energy ratio (the inverse of
energy-delay product) than does a conventional superscalar
processor, and 27% higher performance/energy ratio than a
conventional in-order superscalar processor.
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