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Abstract—A register cache has been proposed to solve the
problems of the huge register files of recent superscalar
processors. The register cache reduces the effective access
latency of the register file for IPC improvement, simplifies the
bypass network, and reduces the ports of the main register
file. Though the primary purpose of the previous works is to
improve IPC, the misses on the register cache may degrade
the IPC. We propose Non-Latency-Oriented Register Cache
System (NORCS). Though the effects of NORCS are the same
as the conventional systems, it is free from register cache
miss penalties that the conventional systems suffer from. In
NORCS, the register cache itself is not different from that of
the conventional systems. The difference is that the instruction
pipeline has stages to read the main register file, which all
instructions go through regardless of register cache hit /
miss. Therefore, the instruction pipeline of NORCS is not
immediately disturbed by the register cache misses. For a
realistic 4-way superscalar processor, NORCS can simplify the
bypass network to the same complexity as a 1-cycle-latency
register file, and reduce the ports of the main register file
from 12 to 4. CACTI simulation shows that the area and power
consumption are reduced to 24.9% and 31.9% compared to the
baseline model without register cache. Though these results are
not different from the conventional systems, IPCs differ greatly.
IPC of the conventional system decreases to 83.1% because of
the cache miss penalties, while that of NORCS is retained at
98.0%.

Keywords-Register file, Register Cache, Instruction pipeline,
Instruction level parallelism, Low-energy Technologies

I. INTRODUCTION

Programs essentially contain fragments that cannot be
parallelized. As Amdahl’s law suggests, speed-up of a single
core which executes sequential portion of programs will
remain to be important even in the era of many-core proces-
sors. In fact, the major processor vendors are maintaining the
widths of each core of mainstream multi-core processors.

The physical register file and the bypass network have
been ones of the most serious bottlenecks of recent super-
scalar processor cores.

In order to achieve high IPC, superscalar processor cores
require a physical register file of high capacity to meet
the number of in-flight instructions. In addition, SMT cores
require a register file whose capacity is proportional to the
number of threads.

A 4-issue superscalar processor core generally requires
a register file with 8 read and 4 write ports. The register

file consists of a multi-port RAM, and its circuit area is
proportional to the square of the number of ports [1], [2].
Figure 1, a chip photograph of an Intel Pentium 4 processor,
shows that the circuit area of the register file is comparable
to that of the level-1 data cache despite that the capacities
are different by more than an order of magnitude. This holds
true for more recent processor cores.

The circuit area of the register file is comparable to that of
the level-1 data cache, and the access latency of the register
file is nearly equal to that of the level-1 data cache. Just like
the level-1 data cache, the register file cannot be accessed
in 1 cycle, and about 2 or 3 pipeline stages are assigned to
it [3], [4]. This pipelining of the register file access causes
the following two problems.

The first, IPC degradation, is a general problem with
deeper pipelines. Increase in the latency of the register
file increases miss penalties of speculations such as branch
prediction. Moreover, deeper pipelines are susceptible to
resource shortage and it results in pipeline stalls [5], [6].
However, these effects are indirect, and don’t degrade the
IPC so seriously. The IPC degradation for every 1 stage
increase is no more than 2% even in the worst cases [7].

The second problem is specific to the register file latency,
and is more serious than the IPC problem. The pipelining
of the register file access requires a large bypass network.
Instruction results produced in the last 2l cycles have to
be forwarded through the bypass where l is the register
file latency. The bypass network consists of long wires and
series of wide multiplexers. A larger bypass network could
limit the clock frequency, and consumes a larger amount of
energy.

In addition to that of the bypass network, energy con-
sumption of the register file itself is also serious. Energy
consumption of a RAM is proportional to the circuit area and
the access frequency [1], [2]. Only load/store instructions
access the level-1 data cache just once. On the other hand,
almost all the instructions access the register file more than
twice (once for read and once for write). Thus, the register
file, which has the circuit area comparable to that of the
level-1 data cache, consumes much more energy than the
level-1 data cache. In addition, SMT increases the access
frequency in proportion to increase in throughput.

The energy consumption and resulting heat are ones of
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L1 Data cache
16 KB  1 read/1 write

Register file
32 bits 256 entries 

12 read/6 write (double pumped 6 read/3 write)

Figure 1. Integer execution core of Intel Pentium 4 Processor [11]. Pentium
4 processor uses a double-pumped 6-read/3-write register file as a 12-read/
6-write register file [3].

the most serious problems of recent processor cores. The
region including the register file and the bypass network is
a hot spot in a core, and limits the clock frequency.

Naı̈ve Methods to Reduce Complexity: To simply re-
duce the complexity of the register file or the bypass
network, some naı̈ve methods to reduce the number of the
resources can be considered.

As for the bypass network, techniques of incomplete
bypass have been proposed [8], [9], [10]. An incomplete
bypass only provides results in the last m < 2l cycles.
After m cycles have passed from the cycle when a producer
instruction is executed, the consumer have to wait to be
issued so that it can obtain the result from the register file.

If the ports of the register file is reduced, the latency of
the register file is reduced, and then the complexity of the
bypass network is also reduced. In this case, the pipeline is
disturbed when the ports fall short.

These techniques result in a trade-off between complexity
and IPC. Section VI shows that the IPC degradation is as
high as 20% in the worst cases.

A register cache is a better solution for these problems
[12], [9], [10]. As its name suggests, a register cache is a
cache to the main register file. The capacity of the register
cache is small enough to limit the access latency generally
to 1 cycle. As far as the register cache hits, it is equivalent to
a conventional register file with 1-cycle latency. This brings
in the following two effects.

Firstly, the register cache is free from the IPC degradation
stated before because the register cache is equivalent to a
1-cycle-latency register file. However, this effect is minor
because this IPC degradation is small as stated before.

Secondly, the register cache reduces the complexity, en-
ergy consumption, and heat in the following ways:

1) Simplifying bypass network: The bypass is neces-
sary not for the main register file but for the register
cache. Thus, the bypass network is almost the same
as that of a 1-cycle-latency register file (Section II).

2) Reducing main register file ports: The number of
ports of the main register file can be reduced because
only operands that miss the register cache access the
main register file. Section VI shows that the number
of the ports can be reduced from 12 to 4.

Though the register cache can solve these problems, it suf-
fers from IPC degradation for yet another reason than stated
before. As described in Section III, out-of-order scheduling

of superscalar processor cores does not have capability to
hide the main register file access latency on register cache
misses. To make matters worse, the effective miss rate,
which is given by the probability of the pipeline disturbance,
is much worse than the miss rate of the register cache
itself. The instruction pipeline is disturbed if any one of the
operands that simultaneously access the register cache cause
a miss. For example, the evaluation result of 456.hmmer
of SPEC2006 in Section VI shows that the register cache
hit rate is as high as 94.2%, but an average number of
operands that access the register cache a cycles is 2.49, then
theoretical effective miss rate is 1−0.9422.49 ≈ 13.9%, and
the IPC degradation is as high as 10.2%.

This paper proposes a Non-latency-Oriented Register
Cache System (NORCS). The register cache system refers
to a system of accessing the register cache, and consists of
the register cache, the main register file, and the instruction
pipeline stages to access them. For simplicity, we refer to a
conventional register cache system as a Latency-Oriented
Register Cache System (LORCS). As its name suggests,
NORCS is a register cache system that does not reduce
the latency. The register cache and the main register file of
NORCS are almost the same as those of LORCS. NORCS
is characterized by its unique instruction pipeline.

LORCS has a pipeline that assumes hit. The pipeline
has a stage to access the register cache but no stages to
access the main register file. This is the same as the level-1
cache. A conventional instruction pipeline has the stages to
access the level-1 cache but not the level-2 cache. On level-
1 cache misses, pipeline stall or flush is usually introduced
to make time to access the level-2 cache. It is because the
relative positions of instructions in the pipeline cannot be
changed after they are issued. This holds true for LORCS.
Since LORCS reduces the latency, it results in considerable
performance degradation caused by pipeline disturbance.

In contrast, NORCS has a pipeline that assumes miss. The
pipeline has stages to access the main register file, and all
instructions pass through the main register file access stages
regardless of register cache hit or miss. On a miss, the main
register file provides a value in the end of the main register
file access stages. While on a hit, the register cache provides
the value also in the end of the main register file access
stages. Thus, NORCS doesn’t reduce the access latency of
the register file, and the IPC is not improved by nature.
Instead, NORCS is free from such pipeline disturbance as
LORCS does, because time to access the main register file
is provided as stages in the pipeline. That is, the IPC is
not necessarily improved, but nor considerably degraded.
While maintaining IPC, NORCS reduces the complexity in
basically the same way as LORCS.

The idea of a cache that doesn’t reduce the latency might
sound weird. For example, a level-1 cache that has the same
latency as a level-2 cache is perfectly meaningless. One
leading textbook defines a cache as “a small, fast memory lo-

302



CR

CR

CR

CR

CR

CR

RW
CW
/

EXIS

EXIS
CR

CR

EXIS

I
p
: 

I
c
2
: 

I
c
1
: 

I
c
3
: 

EXIS

RW
CW
/

RW
CW
/

RW
CW
/

cycle
SC

SC

SC

SC

Figure 2. Backend Pipeline of LORCS (Hit)
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Figure 4. Backend Pipeline of NORCS

cated close to the CPU that holds the most recently accessed
code or data”[13]. According to this definition, NORCS isn’t
a cache because NORCS is not fast. Non-latency-oriented
cache system is useful only if applied to the register file, and
NORCS is the only cache system that doesn’t reduce latency.
The precise reason why a non-latency-oriented cache system
is only applicable to the register file is complicated, and
discussed in Section V.

The rest of the paper is organized as follows. Section II
and III introduces LORCS. After Section IV describes
detailed design of NORCS, Section V gives considerations
on NORCS. Then, Section VI presents evaluation results.

II. LORCS
This section describes LORCS (Latency-Oriented Regis-

ter Cache System) focusing on its behavior on the register
cache hit, in order to explain how it solve the problems
caused by a large register file, especially increase in the
complexity, energy consumption, and heat of the register
file and the bypass network [12], [9], [10]. The behavior on
the register cache miss is described in the next section.

A. Instruction Pipeline of LORCS

Figure 2 shows the behavior of the backend pipeline of
LORCS. The LORCS in this figure has a register cache and
a main register file with 1-cycle latency, respectively. SC,
IS, EX, CR, CW, and RW indicate the stages for instruction
scheduling, issue, execute, register cache read, register cache
write, and, main register file write, respectively. RW/CW
indicates that main register file write and cache write is
performed at the same stage. CR stages are horizontally
divided into 2 to indicate that each instruction has 2 source
operands, which access the register cache in parallel.

In so far as the accesses hit the register cache, it behaves
as a register file with 1-cycle latency, and cycles to read the
main register file don’t appear in the figure. The instruction
pipeline is disturbed on a register cache miss for the same
reason as a usual level-1 data cache. We describe details of
the cache miss in the next section.

B. Register Write

Instruction results written to the main register file are
temporarily held in a write buffer before they are moved
to the main register file.

This write to the main register file through the write buffer
uses the write-through policy; that is, the results are written
both to the register cache and to the write buffer in parallel
on the RW/CW stage right after the execution stage.

Unlike usual data caches, the use of the write-back policy
does not reduce the number of accesses to the main register
file. In usual data caches, stores to the same addresses
often occur, making the number of write-backs less than the
number of the stores. While in the register cache system,
writes to the same entry seldom occurs because the register
renaming of out-of-order superscalar processors eliminates
such overwrites to the same entries.

C. Simplifying Bypass Network

The results of instructions are written both to the register
cache and to the main register file (through the write buffer)
in the RW/CW stage. Thus, the results of recently executed
instructions are most likely to be found in the register cache,
which means that it is not necessary for the main register
file, the write buffer or the bypass network to provide such
recent results.

In Figure 2, the instructions from Ic1 to Ic3 depend on Ip.
Ic3 can receive the result through the register cache because
Ic3 reads the register cache after Ip writes the result to the
register cache. Therefore, only Ic1 and Ic2 have to receive
the result of Ip through the bypass network. The bypass
network is required to provide the results executed in the
last 2 cycles only, which is the same as a register file with
1-cycle latency.

D. Reducing Main Register File Ports

The register cache in LORCS can reduce the number of
read ports of main register file by allowing only the missed
operands to access the main register file. The register cache
can also reduce the number of write ports of main register
file by using a write buffer without any additional forwarding
paths. The use of the write buffer reduces the number of
the write ports to the average throughput of instruction
execution. This method only works on register writes and
does not work on reads, because writes are not critical and
can be delayed like a general store buffer in memory access,
however reads are critical and cannot be delayed by using
such buffer.
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The evaluation results in Section VI show that 2 read and
2 write ports of the main register file are sufficient to meet
the requirement.

The area of a main register file with a few ports is consid-
erably small, because the area of a RAM is proportional to
the square of the number of the ports [1], [2]. The evaluation
results (Section VI) show that the area of the main register
file is almost the same as that of the register cache, and the
sum of the areas of the register cache and main register file
is reduced to 30.7% of a full-port register file.

The reduction in area consequently reduces the latency of
the main register file. The area of the main register file is
almost the same as that of the register cache, thus the main
register file can also be accessed in 1 cycle.

III. REGISTER CACHE MISS IN LORCS

As Butts et al. pointed out, there are only two pragmatic
options to read the main register file on a register cache
miss, that is, stall and flush [10].

A. Stall or Flush

Figure 3(a) shows the behavior of the backend pipeline
on the register cache with stall. In this model, execution
of instructions is delayed by the main register file latency,
which is 1 cycle in the figure.

Figure 3(b) shows the behavior with flush. The flush
model flushes and re-issues all the instructions that have
been issued in the same or later cycles as the instruction
that cause a register cache miss. In this case, execution is
delayed by the issue latency, which is given by the number
of cycles from the schedule stage to the stage where the
flush occurs minus 1, because flushed instructions need to
be replayed from the schedule stage. In this figure, 1 cycle is
assigned to the schedule, issue, and the register cache read
stages, and the issue latency adds up to 3− 1 = 2 cycles.

In general, the main register file latency is shorter than
the issue latency, and the stall model works better than the
flush model as evaluation results in Section VI show1.

As Butts et al. pointed out [10], stall and flush are
only pragmatic options on the register cache miss. We
want to stress this point, because we have been asked so
frequently why different options cannot be used to improve
LORCS performance, which are selective stall and hit/miss
prediction. Though they might seem to reduce the miss
penalty of LORCS easily, they turn out to be either very
difficult to implement or have serious side effects because
of resource conflicts.

B. Selective Stall

Figure 5 (a) and (b) show the block diagram and the
pipeline chart of LORCS, respectively. In these figures, Ip,
I1, I2, and Ic have been issued to the backend pipeline, and

1Usual level-1 data caches work better with flush. This is because the
stall penalties, given by the level-2 cache latency in this case, are longer
than the flush penalties, given by the issue latencies.
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Figure 5. Selective stall

Ic is dependent on Ip. Figure 5 (a) is a snapshot of the point
in time indicated by the down arrow in (b). At this point,
Ip misses the register cache.

Only from Figure 5 (b), the selective stall, which would
mean stalling Ip and Ic while continuing the execution of
I1 and I2, might seem possible. This, however, is because
this kind of chart doesn’t have the capability to represent
resource conflict. Figure 5 (a) shows I2 actually cannot
proceed because it is blocked by Ip in the same lane of the
pipeline. Ic, which must be stalled because it is dependent
on Ip, blocks the other lane of any further issue. Thus, no
instruction can be issued until Ip finally moves on. In this
situation, only I1 may avoid being stalled actually.

For an instruction to proceed, it is necessary to check not
only that it is independent on the cache-missed instruction
but also that the cache-missed instruction and its dependent
instructions don’t exist ahead in the same lane. This requires
a recursive search of dependent instructions every cycle.

After all, selective stall is difficult because the backend of
a out-of-order superscalar processor core is also a pipeline,
and it does not have the capability to re-schedule instruc-
tions. Instructions are primarily scheduled in the instruction
window so that they can flow through the backend pipeline.

C. Hit/Miss Prediction

There have been proposal on hit/miss prediction for a
usual data cache [14]. In these proposals, when a producer
instruction is predicted to miss the cache, the issue of the
consumer is delayed to avoid pipeline disturbance.

Hit/miss prediction for the register cache is slightly dif-
ferent from that for the data cache. Figure 6 (a) and (b)
show pipeline charts of LORCS. As shown in Figure 6 (a),
instructions predicted to miss the register cache should be
issued twice as follows:

1) First issue: Ip, which is predicted to miss the register
cache, is issued at regular timing. Ip will miss the
register cache as predicted, and start the main register
file access in the same way as usual.
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Figure 6. Hit/miss prediction with and without issuing twice

2) Second issue: Ip is issued again just after the latency
of the main register file. Then, the data arrives from
the main register file just in time for the instruction to
be used for execution.

The purpose of the first issue is to start main register file
access. In order to start the main register file access, the
physical register number of the source operand is needed.
Issuing the instruction is the most reasonable way to obtain
the physical register number.

The purpose of the second issue is to actually execute the
instruction and to resolve resource conflict.

Figure 6 (b) shows the pipeline without issuing twice. In
this figure, Ip, which is predicted to miss, is issued and starts
the main register file access, and then waits there (by some
means) for the data from the main register file. In this case,
Ip and I2 cause conflict for the functional unit (if they try
to use the same type of functional unit).

In Figure 6 (a), the instruction scheduler selects Ip for
the second issue and the issue of I1 is delayed to the next
cycle, resolving the resource conflict between Ip and I1 in
the usual way. Issuing the instruction is the most reasonable
way to resolve the resource conflict.

In the case of hit/miss prediction for the data cache, the
second issue can be avoided. Suppose a load instruction
Im is predicted to miss the level-1 cache, and another load
instruction Ih is issued later. Im and Ih do not use the same
functional unit, that is, Im obtains its own data from the
level-2 cache, while Ih from the level-1 cache. Both of the
data items must be written to the register file (and passed to
the consumer instructions through the bypass), and this may
cause a conflict on the register file write port (and an input

port of the bypass). This conflict, however, can be resolved
by adding a write port (and an input port of the bypass) for
the data from the level-2 cache [14]. This, however, is not
applicable for the register cache, because it is not realistic
to add dedicated functional units for all the instructions that
are predicted to miss the register cache.

As a result, issuing twice is the only practical way to
implement hit/miss prediction in the register cache. This,
however, consumes the issue width twice, and results in
worse IPC than stall model, as is shown in Section VI.

IV. NORCS
We propose a NORCS (Non-latency-Oriented Register

Cache System). Since NORCS doesn’t reduce the access
latency of the register file, and the IPC is not improved by
nature. Instead, NORCS is free from such pipeline distur-
bance as LORCS does. That is, the IPC is not necessarily
improved, but nor considerably degraded. While maintaining
IPC, NORCS reduces the complexity in basically the same
way as LORCS.

A. Structure of NORCS

Figures 7 and 8 show block diagrams of LORCS and
NORCS, respectively. In these figures, 2 pipeline stages is
assigned to accessing the main register file. NORCS has
a similar structure to LORCS; the register cache and the
main register file themselves are almost the same as those
of LORCS.

The pipeline latches highlighted in Figure 8 are small but
the most important difference between them. These latches
are placed between the tag and the data arrays of the register
cache, and the tag and the data arrays are accessed on
different stages.

As shown in these figures, the difference in the logic is
quite small, but it makes a great difference to the perfor-
mance as described in the following sections.

B. Instruction Pipeline of NORCS

NORCS has a pipeline that assumes miss, and all instruc-
tions go through the stage(s) to read the main register file
regardless of hit/miss to the register cache.

Figure 4 shows the pipeline chart of the NORCS. In this
figure, the main register file, the tag and the data arrays
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of the register cache have 1-cycle latency, respectively. RS
(Register Scheduling) indicates a stage for hit/miss detection
of the register cache. In this figure, only the lower operand
of the instruction I2 causes the register cache miss. RR/CR
indicates the stage to read either the main register file or the
data array of the register cache depending on the result of
the hit/miss detection on RS stage.

An issued instruction accesses the tag array of the register
cache on the RS stage only for hit/miss detection. If its
operands are found on the register cache (e.g., I1) the
instruction simply sends the result of the tag-matching to
the following stages. On the non-painted RR/CR stage
right before the execution stage, the data array is accessed
depending on the tag-match result. If an operand is not found
in the register cache (e.g., the lower operand I2), the main
register file is read on RR/CR stages painted in Figure 4 .

Pipeline Stall: Since the instruction pipeline of NORCS
has RR stage to read the main register file, it is not disturbed
only on a single register cache miss.

When the read ports of main register file fall short, that
is, more operands than the number of the read ports of the
main register file miss the register cache in a single cycle,
the pipeline is disturbed. The pipeline must produce enough
cycles to read the main register file by stalling the pipeline.

The conditions for the pipeline disturbance of LORCS and
NORCS are summarized as follows:

• LORCS: If a single register cache miss occurs.
• NORCS: If register cache misses more than main

register file read ports occur at a single cycle.

C. Simplifying Bypass Network

As described in Section II, LORCS can simplify the
bypass network because the register cache of LORCS is
equivalent to a 1-cycle-latency register file as far as the
register cache hits. NORCS do so not in the same ways as
LORCS because it doesn’t reduce the latency of the register
file, but by delaying the data array access of the register
cache until the end of the main register file access stages.
We describe this by comparing our technique with usual
implementation of NORCS.

In usual implementation of a cache, the tag and the
data arrays are accessed in parallel in order to obtain the
data faster. Figure 9 shows the pipeline chart of the usual
implementation of NORCS, in which the data array and the
tag array are accessed in parallel on CR stage. The stages
are denoted by the same labels used in Figure 4. In this
figure, Ic is dependent on Ip. Ic can receive the result of
Ip through the register cache, because the CR stage comes
a cycle after CW stage of Ip. If Ic had been issued in the
earlier cycles, it must receive the result through the bypass.
That is, the bypass must provide the result of Ip for 3 cycles
after its issue.

Figure 10 shows the pipeline chart of proposed technique,
in which the data array access of the register cache is delayed

CR RR

EX CWCR

EX CWIS

cycle
RRI

p
:

I
c
: 

need bypass

IS

Figure 9. Bypass of NORCS (Naive implementation)
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until the end of the main register file access stages. On the
RR/CR stage right before the execution stage, the data array
is accessed depending on the tag-match result detected on
the RS stage. The bypass network only provides the result
of Ip for the period of 2 cycles after its issue, because the
RR/CR stage comes the cycle after the CW stage of Ip.
This is shorter than the usual implementation by 1 cycle,
and is the same as the register file with 1-cycle latency.

V. CONSIDERATIONS

This section gives consideration on NORCS. Section V-A
explains why a cache system that doesn’t a reduce latency
works for a register cache but not for a usual data cache.
Section V-B explains why NORCS outperforms LORCS.

A. Cache System That Doesn’t Reduce Latency

The pipeline of NORCS works only for a register cache
but not for a usual data cache. We try to explain this by
using data dependency and the data flow graph (DFG). A
cache system that doesn’t reduce latency works if the latency
doesn’t affect the height of the graph.

Data dependencies can be categorized into “value–value”
and “via–index”. In a data cache, an index refers to a memory
address; while in a register cache, an index refers to a register
number. Data dependencies and the height of the DFG are
summarized as follows:
• Data Cache

– Value–value: Value–value dependency refers to one
from a store to a dependent load instruction. In
this case, increase in the latency of the data cache
possibly heightens the DFG, because the data cache
usually doesn’t bypass values.

– Via–index: Via–index dependency refers to one
from load instruction to another instruction. Also in
this case, increase in the latency of the data cache
possibly heightens the DFG. One example of ”via-
index” dependency is pointer chasing. On the pointer
chasing of the linked list, increase in the latency of
the data cache can heightens the DFG.

• Register Cache
– Value–value: Since the bypass network can imme-

diately pass the data, the register cache latency is
independent of the DFG height.

– Via–index An index — register number is statically
determined, that is, not calculated by other instruc-
tions. Therefore, there are no value–index dependen-
cies in a register cache.
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As a result, a cache system that doesn’t reduce the latency
works only for a register cache but not for a usual data cache.

B. Pipeline That Assumes Miss
NORCS achieves better performance than LORCS. The

reason is, in short, this is a pipeline.
In a modern instruction pipeline with speculations, the

latencies only degrade IPC indirectly through miss penalties.
If there were no prediction misses or pipeline disturbance,
longer latencies do not affect the IPC.

In the rest of this section, for simplicity, only branch
prediction is taken into account, but the same is true for
other predictions. On a branch prediction miss, the number
of execution cycles is extended (approximately) by the miss
penalty of the branch prediction. On a register cache miss,
the number of execution cycles is extended (approximately)
by the miss penalty of the register cache.

The total penalty cycles of LORCS are:

penaltybpred × βbpred + latencyMRF × βRC, (1)

where penaltybpred is the miss penalty of the branch predic-
tion, latencyMRF is the latency of the main register file, βbpred
and βRC are the effective miss rate of a branch prediction
and register cache, respectively2. Note that βbpred is not
“branch prediction miss rate” for a branch instruction, but
the effective miss rate given by the probability of the branch
miss in each cycle. The same is true for βRC.

The upper half of Figure 11 shows the behavior on the
register cache miss of LORCS. The stages are denoted by
the same labels used in Figure 2 and 4. In the figure, the
lower operand of the instruction I3 misses the register cache.
In the upper half of Figure 11, the lighter- and the darker-
shaded regions correspond to latencyMRF and penaltybpred in
the expression, respectively.

The branch miss penalty of NORCS is longer than that of
LORCS by the latency of the main register file. Thus, the
total penalty of NORCS is:

(penaltybpred + latencyMRF)× βbpred. (2)

In the lower half of Figure 11, the surrounding lighter-
shaded region and the surrounded darker-shadowed region
correspond, respectively, to latencyMRF and penaltybpred in
the expression.

Therefore, the difference between the total penalty cycles
of LORCS and that of NORCS is:

(1) − (2) = latencyMRF(βRC − βbpred). (3)

Thus, if βRC > βbpred, NORCS outperforms LORCS. This
expression can be interpreted as follows: NORCS moves
the register cache miss penalty of LORCS (latencyMRF) into
the miss penalty of the branch prediction. βRC is much
higher than βbpred, and this is the reason why NORCS can
outperform LORCS.

2In the flush model, the register cache miss penalty is given by the issue
latency, which is usually not shorter than latencyMRF.
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VI. EVALUATION

A. Evaluation environment

We evaluated LORCS and NORCS using a cycle accurate
processor simulator Onikiri 2[15] developed in our labo-
ratory. Unlike SimpleScalar Tool set [16], which is used
widely for researches on processor architecture, Onikiri 2
replays execution of instruction in the exact cycle when it is
on the execution stage. Thus, Onikiri 2 can simulate more
precisely than SimpleScalar Tool set, when adopting data
predictions such as address match/mismatch prediction.

We used 29 programs from the SPEC CPU2006 [17]
benchmark with ref data sets. The programs were compiled
using gcc 4.2.2 with the “−O3” option. We skipped the first
1G instructions and evaluated the next 100M instructions.
The left column of Table I, labeled “Baseline”, gives the
configuration of the baseline processor. This basic structure
is based on MIPS R10000 out-of-order superscalar proces-
sor, which can issue up to 6 instructions per cycle. Some
configurations such as the branch predictor and the caches
are set to match modern processors. We implemented both
LORCS and NORCS on the baseline processor.

1) Evaluation models: We evaluated the following mod-
els:
• PRF: The baseline model with Pipelined Register Files

with complete bypass networks.
• PRF-IB: Pipelined Register Files with Incomplete By-

pass networks. If operands are produced within 2 cycles,
they are sent through the bypass network. Otherwise,
the backend pipeline is stalled until the operands can
be obtained through the register files [8]. The bypass
networks have the same complexity as those for LORCS,
NORCS, and register files with 1-cycle latency.

• NORCS: A model of NORCS. The register caches are
adopted to the integer register files. Each register cache
in the “infinite” model has the same number of entries
as the corresponding register file.

• LORCS: A model of LORCS. The configuration of the
register caches is the same as in NORCS model. Several

307



options on register cache miss are implemented; details
of these are described later.

The left column of Table II, labeled “Baseline”, sum-
marizes the other parameters for the register file system for
each model. “PRF”, “RC”, and “MRF” in the table mean
the pipelined register file, the register cache, and the main
register file, respectively.

2) Replacement Policy of Register Cache: In addition
to LRU, we evaluated USE-B model that is a use-based
replacement policy proposed by Butts et al. [10]. They used
a use-predictor that predicts how many times a register will
be referenced before its release [18] for replacement. The
configuration of the use-predictor is shown in Table II. These
parameters are the same as those given in [10].

3) Miss Model of LORCS: Regarding the behavior on a
register cache miss in LORCS, STALL and FLUSH models
implement backend stall and backend flush, respectively,
as described in Section III-A. In addition to STALL and
FLUSH, we evaluated the following idealized models:
• SELECTIVE-FLUSH: This model selectively flushes

and re-issues only those instructions that miss the register
cache and its dependent instructions.

• PRED-PERFECT: This model is extremely idealized.
It uses hit/miss prediction described in Section III-C with
a 100% hit rate. This removes absolutely any possible
pipeline disturbance caused by register cache misses.
Thus, the performance degradation from a model with
“infinite” register cache only comes from consuming
twice the issue width and delaying the execution of
instructions that caused the register cache misses (Sec-
tion III).

B. Evaluation Result

As described in Section V-B, Both NORCS and LORCS
have the same benefit that is to reduce the circuit area and
the energy consumption of the register file. However, per-
formance of both model is significantly different. Therefore,
it is important to compare areas and energy consumption
per performance of each model. First, we show evaluation

results of performance, area and energy consumption, and
then we show relationship among them.

1) Register Cache Hit Rate: In addition to LRU and
the use-based policy, we show evaluation results of pseudo
optimal replacement policy in this section. OPT replacement
policy is known as an ideal replacement policy, which
replaces the entry that will not be referred to for the longest
time by any instructions. POPT replaces the entry that will
not be referred until the furthest future only by the in-flight
instructions.

Figure 12 shows the average register cache hit rates in
LORCS over all the benchmark programs. POPT and USE-B
indicate models with the pseudo optimal replacement policy
and the use-based policy, respectively. The number of the
main register file ports is fixed at 2-read/2-write and the
register cache miss model is fixed to STALL, because the
results are strongly influenced only by the number of entries
and replacement policies of the register cache. We also
evaluated register cache hit rates in NORCS, but we only
show the results for LORCS because there are no significant
differences between these 2 models.

USE-B models show considerably high hit rates. The
hit rates of USE-B models are higher than those of LRU
models by about 3–4%, and as high as those of ideal POPT
models. Hereafter, we use USE-B for LORCS while LRU
for NORCS. NORCS shows better performance in spite of
the lower hit rates of LRU.

2) Configuration of LORCS: LORCS has more param-
eters than NORCS. For the remainder of this section, we
limit the search space for LORCS.

The Number of the main register file Ports: First,
we evaluated the IPC of LORCS and NORCS models
changing the number of the ports of the main register file.
Figures 13(a) and 13(b) show average relative IPCs to the
model with a full-port main register file, that is 8 read /4
write. Figure 13(a) changes the number of the write ports
while fixing the number of the read ports at 2. On the
contrary, Figure 13(b) changes the number of the read ports
fixing the number of the write ports at 2. We only show the

Table I
SIMULATION CONFIGURATIONS

Name Baseline Ultra-wide
ISA Alpha ←
pipeline stages fetch:3, rename:2, fetch:4, rename:5,

dispatch:2, issue:2 dispatch:2, issue:1
fetch width 4 inst. 8 inst.
execution unit int:2, fp:2, mem:2. int:6, fp:4, mem:2.
inst. window int:32, fp:16, mem:16 unified:128
ROB 128 entries 512 entries
branch pred. 8 KB g-share 16 KB g-share
miss penalty 11∼12 cycles 14∼15 cycles
BTB 2 K entries, 4 way 4 K entries, 4 way
RAS 8entries 64entries
L1C 32 KB, 4 way, ←

64 B/line,3 cycles
L2C 4 MB, 8 way, ←

64 B/line, 10 cycles
main memory 200 cycles ←

Table II
PARAMETERS OF REGISTER FILE SYSTEMS

Name Baseline Ultra-wide
PRF latency 2 cycles ←
PRF capacity int:128, fp:128 int:512, fp:512
PRF ports 12 ports 24 ports
RC latency 1 cycle ←
RC capacity 4, 8, 16, 32, 64 entries 16, 32, 64 entries
RC associativity full 2-way
MRF latency 1 cycle ←
MRF capacity int:128, fp:128 int:512, fp:512
MRF ports read:1-3 read:4

write:1-3 ports write:4 ports
write buffer 8 entries ←
use predictor 4 K entries, 4 way, ←

4 bits/pred,
2 bits/conf,
6 bits/tag,
6 bits/future ctl
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results for models with for an 8-, 16-, 32- and “infinite”-
entry register cache because models with a 4- and 64 entry
register cache show the same tendency.

These graphs show that 2 read ports and 2 write ports
in the main register file are sufficient to maintain the
performance of the full-port main register file. Hereafter,
we fix the number of the ports of the main register file at
2-read/2-write.

Behavior on a Register Cache Miss of LORCS: Fig-
ure 14 shows the average relative IPCs of the models with
different behaviors on a register cache miss, while changing
the number of entries in each register cache. The IPCs are
given relative to a model with “infinite” register caches.

As we explained in Section III, the graph shows that
FLUSH models have the worst performance. On the other
hand, the realistic STALL models have almost the same
performance as the ideal SELECTIVE-FLUSH and PRED-
PERFECT models. The ideal SELECTIVE-FLUSH model
selectively flushes dependent instructions, however, a regis-
ter cache miss penalty of each flushed instruction is much
larger than that of STALL model, as described in Section III.
Therefore, there are no significant differences between these
2 models.

Thus, hereafter, we fix the behavior on the register cache
miss to STALL.

3) IPC: Figure 15 shows the IPCs for each model
relative to the baseline PRF model for an 8-, 16-, 32- and
“infinite”- entry register cache. We only show the results
for these models because models with a 4- and 64 entry
register cache show the same tendency. We evaluated PRF-
IB model, LORCS model with LRU and USE-B policy, and
NORCS model with LRU policy. The “min”, “max” and
“average” bars are the minimum, maximum, and average of
the programs in the benchmark, respectively. The other bars

such as “456.hmmer” are specific programs that show the
lowest and the highest performance.

The IPC degradation of NORCS models is considerably
small; it is only 2.0%, even with an 8-entry register cache.
Furthermore, the variations of the IPC of the various pro-
grams are also small. The performance of NORCS is not
sensitive to the register cache hit rates (Section V-B).

The LORCS models with an “infinite”-entry register cache
and of 32-entry register cache with USE-B policy show the
performance improvement relative to the baseline model due
to the shortened pipeline, although this is only 2.1% and
0.2%, respectively.

On the other hand, LORCS models with the other con-
figurations show significant performance degradation. Even
with USE-B policy, the average degradation is 16.9% and
7.3% for an 8- and 16-entry register cache, respectively. With
LRU policy, the degradation is more marked — the average
degradation is 20.8%, 10.0%, and 3.6% for an 8-, 16-, and
32-entry register cache, respectively.

In addition, the degradations of LORCS largely vary from
program to program. In particular, the IPC degradation of
LORCS with LRU for 456.hmmer is no less than 25% even
with a 32-entry register cache.

This is because the performance of LORCS is more
sensitive to the register cache hit rates (Section V-B). The
register cache hit rates depends highly on the replacement
policy, and largely varies from program to program. It is
undesirable to show such low performances for specific
programs even if the average performance is acceptable.

On the whole, in order to overachieve the PRF-IB model,
only 8-entry register cache is necessary for NORCS, while
32-entry register cache and USE-B policy is necessary
for LORCS. Moreover, these configurations are adequate
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Table III
EFFECTIVE MISS RATE

LORCS with 32 entry-RC (USE-B) NORCS with 8 entry-RC (LRU)
Issued Read RC Hit(%) Effc Miss(%) IPC Issued Read RC Hit(%) Effc Miss(%) IPC

429.mcf 0.44 0.53 92.2 3.4 0.99 0.49 0.60 82.83 0.98 1.00
456.hmmer 1.88 2.49 94.2 15.7 0.90 1.90 2.53 62.95 11.7 0.90

464.h264ref 1.91 2.57 99.0 8.8 0.95 1.87 2.51 73.14 8.7 0.92
average 1.48 1.90 98.6 2.7 1.00 1.46 1.89 79.91 2.3 0.98
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because they achieve almost the same performance as the
models with “infinite”-entry register cache.

4) Effective miss rate: Table III shows the effective miss
rates, which is given by the probability of the pipeline
disturbance. This table shows the results for LORCS with
32 entry USE-B register cache and NORCS with 8 entry
LRU register cache. These 2 models show almost same
performance in Section VI-B3. This table shows the results
of characteristic benchmark programs and average of the all
benchmark programs. “Issued ” and “Read” are the number
of issued instructions per cycle and the number of operands
reading the register cache per cycle, respectively. “RC Hit”
and “Effec Miss” are register cache hit rate per access and
effective miss rate, respectively.

As described in Section V-B, effective miss rate in
LORCS is much worse than the miss rate of the register
cache itself. 464.h264ref shows that the register cache hit
rate is as high as 99.0%, but an average number of operands
that access the register cache a cycles is 2.57 and the
effective miss rate is 8.8%. As a result, the IPC degradation
for 464.h264ref is 5.1%.

As described in Section V-B, effective miss rate in
NORCS is not sensitive to the register cache hit rates. the
table show that the register cache hit rates for the NORCS
model is much worse than those of the LORCS model, be-
cause register cache capacities of these models are different.
However, the effective miss rates and IPC degradations are
not much different from those of the LORCS model.

5) Circuit Area and Energy Consumption: We evaluated
the area and the energy consumption of each model using
CACTI 5.3 model [2]. We evaluated ITRS 45nm and 32nm
technology nodes [19], but we only show the results for
32nm node because both show the same tendency.

Circuit Area: Figure 17 shows the circuit areas relative
to that of PRF model. The areas include those of the register
cache, main register file and use-predictor.

The areas of the register cache and the main register file

are the same in both NORCS and LORCS because they have
the same number of entries and ports. The area of the main
register file is reduced to 12.2%, because the number of the
ports of the main register file is reduced from 12 to 4, and
the area of a register file is proportional to the square of the
number of the ports.

The area of use-predictor is 36.1% of that of the register
file in PRF-IB model. The area of use-predictor is relatively
large compared with that of the register cache and the main
register file, because the use-predictor has many ports. Gen-
erally speaking, a predictor like the use-predictor requires
the same number of read ports as the fetch width and the
same number of write ports as the retirement width. The
read ports are used to get predicted data on the frontend
stages, while the write ports are used to write training data
on the retirement stages [18]. In the evaluated configuration,
the use-predictor requires 4-read/4-write ports.

In NORCS, the total area of the main register file and the
register cache is reduced to 19.9%, 24.9%, 34.7%, 42.0%,
and 98.0% of the register file of PRF model for a 4-, 8-, 16-,
32- and 64-entry register cache, respectively. In LORCS, the
total area of the main register file and the register cache is
the same as that of NORCS, but the total area including use-
predictor is much larger than that of NORCS. The total areas
including use-predictors are 56.1%, 61.0%, 70.8%, 90.3%,
and 134.1% of the register file of PRF model for a 4-, 8-,
16-, 32-, and 64-entry register cache, respectively.

Energy Consumption: Figure 18 shows the energy
consumption of the register cache, main register file and
use-predictor in each model relative to the register file
in PRF model. The energy consumption is evaluated for
each benchmark programs, and then averaged over all the
programs.

The total energy consumption of the register cache and
the main register file is reduced to about 28.2%, 31.9%,
40.6%, 59.0%, 96.3% for a 4-, 8-, 16-, 32-, and 64-entry
register caches. In LORCS and NORCS, the total energy
consumption of the register cache and the main register file
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differs slightly, because the number of accesses and the time
to execute the programs differ slightly.

The energy consumption of the use-predictor is 48.1%
of that of the register file in PRF-IB model. In LORCS, the
total energy consumption of the register cache, main register
file and use-predictor is 77.4%, 79.8%, 86.7%, 103.8%, and
140.1% for a 4-, 8-, 16-, 32- ,and 64-entry register caches.

6) Trade-off between IPC and Energy Consumption:
Figure 19(a) shows the relative IPC per energy consumption
in each model. Each IPC and energy consumption is relative
to the register file in PRF model and is the same as those in
Figures 15 and 18. Each data point of the line in this figure
indicates a value of the model with a 4-, 8-, 16-, 32-, and
64- entries register cache from left to right.

The figure shows that NORCS reduces energy consump-
tion without large performance degradation. On the other
hand, in LORCS with LRU and USE-B, performance and
energy consumption are trade-offs. LORCS with fewer en-
tries of a register cache reduces energy consumption, but
performance also degrades.

There are no significant difference of IPCs between
NORCS with 8-entry LRU register cache and LORCS with
64-entry register cache of LRU policy, and the difference
is 1.8%. However, the energy consumption of the model of
NORCS is reduced by 69.3% from the model of LORCS.
NORCS and LORCS with 8 entries LRU register cache show
almost the same energy consumption. However, the model of
NORCS improves IPC by 18.7% from the model of LORCS.

Figure 19(b) shows the relative IPC per energy consump-
tion in the benchmark with the worst IPC in Figure 15.
This figure shows the properties of NORCS and LORCS
more clearly. NORCS with a 8-entry LRU register cache
and LORCS with a 32-entry USE-B register cache show
almost the same IPCs, but the former reduces the energy
consumption by 71.9% from the latter. NORCS with the
same configuration and LORCS with 8-entries LRU register
cache show almost the same energy consumption, but the
model of NORCS improves IPC by 31.1% from the model
of LORCS.

C. Evaluation on Wide Superscalar Processor

Previous researchers have targeted ultra-wide superscalar
processors with 8-wide and 512-entry register files [10]. In

this subsection, we evaluated the register cache system on
these ultra-wide superscalar processors.

The right columns of Tables I and II, labeled “Ultra-
wide”, show the configurations of an 8-wide superscalar
processor, used as the baseline model in this section. This
configuration is almost the same as that used in [10]. The
models of the register cache systems are almost the same as
those described before, but some parameters are changed to
match the evaluation of Butts et al. Specifically, the number
of the ports of the main register file is 4-read/4-write, and
the register cache is 2-way set-associative that uses a unique
indexing policy proposed by Butts et al. [10].

Figure 16 shows the IPCs for each model relative to
the baseline PRF. The labels are the same as the ones in
Figure 15. The results show a similar tendency to those in
Section VI-B3. The IPC degradation of NORCS models is
small — 0.12%, 0.6%, and 0.03% for a 16-, 32-, and 64-
entry register cache, respectively. On the other hand, the
LORCS show significant performance degradation — 16%,
9.7%, and 4.3% for a 16, 32, and 64-entry register cache,
respectively.

Butts et al. evaluated the performance improvement of
LORCS compared to PRF-IB models, and showed that a 64-
entry register cache with USE-B policy outperforms PRF-IB
[10]. Our evaluation results show that LORCS with a 64-
entry register cache and the same parameters outperforms
PRF-IB by 6.6%, and this closely matches their result of
6%. NORCS with a 16-entry register cache, on the other
hand, outperforms PRF-IB by 10.1%.

These results show that NORCS also works well on ultra-
wide superscalar processors. Specifically, NORCS with a 16-
entry register cache with LRU policy outperforms LORCS
with a 64-entry register cache with USE-B policy in this
configuration.

D. Evaluation on SMT Processor
As described in Section I, SMT suffers from a need for

a larger register file. We evaluate our proposal on a SMT
with the same configuration given in Table I and a 2-way
SMT feature. Figure 19(c) shows the relative IPC per energy
consumption in each model. We executed 2 threads for all
the combinations from 29 programs in SPEC CPU2006.

The IPC degradations in whole models are worse than
those in single thread execution (Section VI-B3). However,
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the IPC degradation in NORCS models is still small; the
average degradation is 4.1% and 1.8% for an 8- and 16-
entry register cache. On the other hand, LORCS models
show significant performance degradation. Even with USE-B
policy, the average degradation is 26.0%, 16.5%, and 3.1%
for an 8-, 16-, and 32-entry register cache.

There are no significant difference of IPCs between
NORCS with 8-entry LRU register cache and LORCS with
32-entry register cache of USE-B policy, and the differ-
ence is 0.94%. However, the energy consumption of the
NORCS model is reduced by 71.6% from the LORCS
model. NORCS and LORCS with 8 entry LRU register
cache show almost same energy consumption. However, the
NORCS improves IPC by 23.0% from the LORCS.

VII. CONCLUSION

A register file is one of the most costly units in the recent
superscalar processors. A large register file causes many
problems as described in Section I. This paper introduces
NORCS, a new technique of the register cache system that
does not reduce the latency. NORCS is characterized by a
unique pipeline that assumes miss of the register cache. We
just add a set of pipeline latches to a conventional register
cache system in order to add pipeline stages to read the
main register file. This minimum modification causes a great
difference in performance, because the pipeline of NORCS
is not disturbed only on register cache misses.

We evaluated the IPC, area, and energy consumption of
NORCS, LORCS, and pipelined register file on a practical
4-way and an ultra-wide 8-way superscalar processor. The
evaluation results show the area and the energy consumption
of NORCS is reduced to 24.9% and 31.9% of the pipelined
register file, respectively, at a minimum cost of 2.1% IPC
degradation. NORCS using the small 8-entry register cache
with LRU policy achieves the same level performance as
conventional LORCS using a 32-entry register cache with
use-based policy, which shows very high hit rates that are
as high as the ideal model, and in this configuration, the
area and the energy consumption of NORCS is reduced to
27.6% and 31.9% of LORCS, respectively.
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