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Abstract—High-performance soft processors in field-
programmable gate arrays (FPGAs) have become increasingly
important as recent large FPGA systems have relied on soft
processors to run many complex workloads, like a network
software stack. An out-of-order (OoO) superscalar approach
is a good candidate to improve performance in such cases, as
evidenced from OoO hard processor studies. Recent studies have
revealed, however, that conventional OoO processor components
do not fit well in an FPGA, and it is thus important to carefully
design such components for FPGA characteristics.

Hence, we propose the RSD processor: a new, open-source
OoO RISC-V soft processor optimized for an FPGA. The
RSD supports many aggressive OoO execution features, like
speculative scheduling, OoO memory instruction execution and
disambiguation, a memory dependence predictor, and a non-
blocking cache. While the RSD supports such aggressive features,
it also leverages FPGA characteristics. Therefore, it consumes
fewer FPGA resources than are consumed by existing OoO soft
processors, which do not support such aggressive features well.
We first introduce the end result of the RSD microarchitecture
design and then describe several novel optimization techniques.
The RSD achieves up to 2.5-times higher Dhrystone MIPS while
using 60% fewer registers and 64% fewer lookup tables (LUTs)
as compared to state-of-the-art, open-source OoO processors.

I. INTRODUCTION

General-purpose processors play important roles in systems
based on field-programmable gate arrays (FPGAs). As systems
get larger and more complex, processors run many control
tasks, like an operating system and a network software stack.
Moreover, some systems require processors to run main com-
pute kernels, which are impractical to deploy on dedicated
hardware. For instance, Microsoft uses a combination of hard
processors in an application-specific integrated circuit (ASIC)
and soft processors in an FPGA in a large FPGA-based system
for datacenter services [22].

As an FPGA and soft processors are increasingly used
in a large variety of applications, the performance of soft
processors is becoming increasingly important. Even though
soft processors are never more efficient than hard processors,
they remain useful because of their high flexibility, reconfig-
urability, and low cost, as they can be integrated without an
additional chip. In the Microsoft system, for example, one
main compute kernel, which is too complex to deploy on
dedicated hardware, is run by specialized soft processors.

To improve the performance of soft processors, several
recent studies have focused on out-of-order (OoO) superscalar
approaches, as evidenced from OoO hard processor studies

showing significant performance improvement over in-order
approaches. While early research on FPGA-synthesizable OoO
processors was mainly for ASIC prototyping [6], [7], [26],
[34], these recent studies have targeted a high-performance,
resource-efficient OoO soft processor on an FPGA. In partic-
ular, these studies have explored or proposed FPGA-friendly
microarchitectures for the reorder buffer (ROB) [23], the
rename unit [3], the issue queue (IQ) [4], [12], [30], and the
memory system [29], [31]. A key insight derived from these
studies is that the performance and resource efficiency of OoO
soft processors are highly improved by microarchitectures
leveraging FPGA characteristics.

Applying this insight, we propose the RSD: a new open-
source RISC-V OoO soft processor. For high performance, the
RSD supports several advanced microarchitectural features,
like speculative OoO load and store execution, a memory
dependence predictor (MDP), speculative scheduling, and a
non-blocking cache. In our evaluations, the RSD achieved up
to 2.5-times higher Dhrystone million instructions per second
(MIPS) with 60% fewer registers and 64% fewer lookup tables
(LUTs) as compared to two state-of-the-art, open-source OoO
processors, as summarized in Table I.

This high performance and efficiency was achieved through
two novel techniques leveraging FPGA characteristics. The
first technique was FPGA-friendly speculative scheduling.
Speculative scheduling is a technique to minimize execute-to-
use latency. This technique issues instructions speculatively,
before the validity of their operands is determined. We ob-
served that speculative scheduling could achieve a gain of up to
26.8% in instructions per cycle (IPC) for SPECint 2006/2017
[27], [28] on a software simulator. Even though this technique
has generally been used for OoO hard processors, it is not well
studied for OoO soft processors. Hence, this paper explores
an FPGA-friendly speculative scheduling implementation that
achieves a better tradeoff between the performance and hard-
ware resource overhead on an FPGA.

The second technique was optimization for multiport-RAM-
based components (e.g., the physical register file (PRF)) to
significantly improve the resource efficiency by using an
FPGA-optimized multiport RAM. In today’s open-source OoO
processors, these components are built naively by using flip-
flops (FFs) and logic circuits, thus constituting the dominant
resource overhead. Several previous works [23], [24] have
pointed out this issue for components such as the ROB. There



TABLE I
EVALUATED OPEN-SOURCE OOO PROCESSORS.

RSD OPA [29] BOOM [6]
ISA RV32IM RV32IM w/o DIV, CSR RV64GC / RV32IMAC

Ld/St Exec. OoO Ld/St Exec. with Forwarding OoO Load Exec. & InO Store Exec.
w/o Forwarding OoO Ld/St Exec. with Forwarding

Mem. Dep. Predictor Support N/A N/A
Speculative Scheduling Support with IQ or Replay Queue Support with IQ N/A
Cache Non-blocking Blocking Non-blocking
TLB N/A N/A Support
Memory BRAM or DRAM BRAM only BRAM or DRAM
Interconnect AXI4 or AHB N/A AXI4 or AHB
Language SystemVerilog VHDL Chisel

are open questions, however, as to (1) which components
we can apply an FPGA-optimized multiport RAM to and (2)
how much this technique reduces the consumption of FPGA
resources in the entire OoO processor design. We thus explain
which components in the RSD had this optimization applied,
and we show that it saved almost half the FPGA resources.

The remainder of this paper is structured as follows. Section
II discusses related work on OoO soft processors. Section III
presents the RSD microarchitecture. Section IV describes the
speculative scheduling mechanisms that we explored for the
RSD. Section V explains the RSD components for which we
applied FPGA-optimized multiport RAM. Finally, section VI
presents our evaluation results, before a brief conclusion.

II. RELATED WORK

There are several open-source, FPGA-synthesizable OoO
processors, but most of them use an FPGA solely for ASIC
prototyping or a research/education environment, rather than
designing an OoO processor targeting an FPGA [6], [7], [10],
[34]. For example, the RISC-V BOOM processor runs on an
FPGA, but it is aimed at an ASIC implementation and thus
not optimized for an FPGA [6].

We are currently aware of only one open-source OoO
processor targeting an FPGA: the open processor architecture
(OPA) [29]. The main component optimized for an FPGA is
the store queue (STQ). As a conventional STQ is a content-
addressable memory (CAM), which is very expensive on an
FPGA, the OPA eliminates the STQ completely. Although
this optimization may reduce FPGA resources and improve
operating frequency, it hurts performance because a store
instruction can be executed only when it becomes the oldest
instruction in the processor, and a load instruction cannot
forward data from a preceding store instruction.

We compare the RSD with the BOOM and the OPA, the
two open-source OoO processors mentioned above, which are
optimized for an ASIC and an FPGA, respectively. Table I
summarizes the supported features of these processors.

III. THE RSD MICROARCHITECTURE

This section introduces the RSD microarchitecture and
provides background on the proposed techniques described
in sections IV and V. Fig. 1 shows a block diagram of the
RSD. The microarchitecture consists of three blocks: a front-
end block, a scheduling block, and an execution block.

The front-end block fetches and decodes instructions from
the L1 instruction cache (L1IC) in program order. The current

implementation uses the gshare branch predictor [17]. The
following subsections describe the scheduling block and the
execution block.

A. Scheduling Block

The scheduling block extracts instruction-level parallelism
(ILP) for instructions sent from the front-end block, and it
issues instructions to the execution block out of program order.
The scheduling block mainly consists of the rename unit, the
dispatch unit, the issue queue (IQ), and the reorder buffer.

1) Rename Unit: To remove false dependencies (write after
write and write after read) between instructions, the rename
unit renames the operand logical registers of an instruction.
Specifically, it renames the logical registers of destination
operands to physical registers obtained from the PRF free list,
and it then registers the mapped physical registers in a register
map table (RMT). The logical registers of source operands
are renamed to the physical registers most recently renamed
to those logical registers by using the RMT.

2) Dispatch Unit: The dispatch unit allocates an entry for a
renamed instruction in several components, such as the ROB,
the IQ, the load queue (LDQ), and the store queue (STQ),
depending on the instruction type. The dispatch unit stalls
when any of these structures is full. The following subsections
describe the details of these components and the submodules
of the dispatch unit.

3) Issue Queue: The IQ is responsible for issuing instruc-
tions to the execution block when all of an instruction’s source
operands are available. It consists of three submodules: the
wakeup logic, the select logic, and the instruction payload
RAM. The wakeup logic keeps track of the readiness of each
uncompleted instruction, and the select logic selects ready
instructions and issue them to the execution block.

The instruction payload RAM holds a payload (e.g., the
instruction type) required for executing an instruction. When
an instruction is stored in the IQ, its payload is thus stored in
the RAM.

The RSD supports a speculative scheduling mechanism.
The instruction replay logic (IRL) is a unit to support this
mechanism, as described in detail in section IV.

We use a matrix-based wakeup logic with a random select
logic in the current implementation [11], [12], [25]. Fig. 2
shows a block diagram of the matrix-based wakeup logic in
the four-entry IQ. In this example, the rename unit renames
one instruction, and the IQ issues one instruction per cycle.
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Fig. 1. Block diagram of the RSD, with multiport-RAM-based components highlighted in bold.
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The wakeup logic tracks the dependencies of instructions
in the IQ by using a bit matrix of dependency bits. Each
combination of a row and column corresponds to an instruction
in the IQ, so that the other bits in a row indicate other
instructions in the IQ. An asserted bit in a row thus means
that the instruction corresponding to the row depends on the
instruction corresponding to the column. For example, in Fig.
2, the asserted rightmost bit in the third row means that an
instruction in the third IQ entry depends on an instruction in
the fourth IQ entry. Bits in a column are cleared by the select
signal of the corresponding instruction when it is selected and
issued. An instruction is ready for selection when all bits in
the corresponding row are deasserted.

The matrix-based wakeup logic uses IQ IDs instead of
register IDs to schedule instructions; therefore, an instruction
allocating an IQ entry must know the IQ IDs of the depending
instructions from its source operand register IDs. For this
purpose, the wakeup allocation table (WAT), a RAM structure,
is used to convert a logical register ID to the IQ ID of the
youngest older instruction that updates the logical register.

The ready-bit table is used for an instruction allocating an
IQ entry to know the readiness of its source operands. It is
updated by an issued instruction using its destination physical
register ID. The destination RAM is used to convert an IQ ID to
the corresponding destination physical register ID, because the
wakeup logic knows only the IQ ID of an issued instruction.

4) Reorder Buffer: The ROB keeps the state of dispatched
instructions and commits an instruction once it is executed
correctly and becomes the oldest instruction in the processor.
When an instruction is executed incorrectly, the instruction
and the following instructions are flushed or replayed.
B. Execution Block

The execution block executes the instructions sent from the
scheduling block.

1) Physical Register File and Bypass Network: The PRF
holds operand physical register data. When an instruction
comes to this block, it first receives its source operand data
from the PRF or a preceding instruction via a bypass network.
The corresponding execution unit then executes the instruction
and writes the result data to the PRF and the bypass network.

2) Load-Store Unit: The load-store unit (LSU) manages
loads and stores and communicates with the memory system.
When a load or a store misses in the L1 data cache (L1DC),
the LSU sends a cache fill request to the memory system.

The LSU involves a major design decision that affects its
performance and design complexity: whether it allows loads
and stores to be executed OoO speculatively. Loads and stores
have special dependencies called memory dependencies, in
which a load depends on an older store that writes to the
same memory location. Because the memory dependency is
disambiguated only at execution time, only a few loads and
stores can be reordered precisely. Today’s high-performance
OoO processors overcome this limitation by executing mem-
ory instructions speculatively out of program order.

The RSD supports such speculative OoO memory instruc-
tion execution. To achieve this, the LSU guarantees the correct-
ness of memory instructions by performing dynamic memory
disambiguation using the LDQ and the STQ, which are
CAM structures populated by loads and stores, respectively.
The LSU performs dynamic memory disambiguation in the
following manner.

• The store-data array (SDA) holds data for all stores
that are not yet committed to make them appear to the
memory system in program order nonspeculatively.

• A load searches older address-generated stores in the STQ
and receives data from the youngest older store with the
same address (store-load forwarding).



• A store searches younger completed loads in the LDQ
with the same address and performs instruction replays
for all matching loads and their dependents (store-load
ordering violation).

In this manner, any memory access ordering violations are
detected and recovered. To reduce the number of instruction
replays due to store-load ordering violations, the RSD uses
a memory dependence predictor (MDP), as described in the
following section.
C. Memory Dependence Predictor

The RSD has an MDP [8], [19] to improve performance
by reducing store-load ordering violations. The MDP imple-
mentation in the RSD predicts whether a load depends on any
older in-flight store, instead of a store that a load depends
on. When the MDP predicts a dependency, the predicted load
waits in the IQ until all older stores have been issued.

This implementation may lose some opportunities to execute
a load earlier, but it can be implemented with a very modest
hardware overhead. The MDP consists of a 1-bit vector. When
a load causes a store-load ordering violation, it accesses the bit
vector by using the load’s PC value, and it asserts the indexed
bit. The MDP predicts a renamed load to have a memory
dependency if the bit indexed by the load’s PC is set. The
predicted dependency is then resolved in the same way as a
register dependency in the matrix-based wakeup logic.

IV. SPECULATIVE SCHEDULING AND REPLAY

This section describes one key technique to improve the
performance of the RSD: speculative scheduling and replay.
This technique is widely used in hard processors [21], but
there are few studies on its use in soft processors. Therefore,
FPGA-friendly implementation of speculative scheduling and
replay is an open research question. First, we give an overview
of speculative scheduling and classify the existing microar-
chitectural options into two types. Then, we characterize
implementations of each type in an FPGA.
A. Motivation and Overview

Recent OoO hard processors speculatively issue instructions
that depend on instructions with variable latency. Typical
instructions with such variable latency are load instructions,
because their latency varies with cache hits or misses. If a
consumer instruction waits until its producer load’s latency is
determined, then the load-to-use latency is prolonged. Fig. 3
illustrates this by showing pipeline diagrams of a load followed
by a dependent instruction (a) without and (b) with speculative
scheduling in the RSD. Without speculative scheduling, the
decision to schedule the consumers of a load is delayed until
the load is executed and a cache hit or miss is determined.
On the other hand, with speculative scheduling, a load is
assumed to hit in the L1DC, and consumers are issued so
that the instructions are executed in the following cycle of
the producer load execution on an L1DC hit. As a result,
speculative scheduling saves two cycles of load-to-use latency.

This load-to-use latency reduction significantly improves
performance. We evaluated the performance impact of spec-
ulative scheduling on a software simulator modeling the
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RSD. The results showed that speculative scheduling achieved
speedup of up to 26.8% (8.9% on average) over a processor
without speculative scheduling for SPECint 2006/2017.

Speculative scheduling can cause misprediction when the
predicted execution latency of a producer is wrong, so it
requires a mechanism to aid in such misprediction. A com-
monly used approach is to replay (reissue) the mispredicted
instruction and all speculatively scheduled consumers by using
an instruction replay logic (IRL). For example, if a producer
load in Fig. 3(b) misses in the L1DC, then no consumers of
the load can be executed, and they are thus replayed by the
IRL when the load receives data.

B. Detailed Designs

Existing design options for speculative scheduling are di-
vided into two categories: mechanisms based on an IQ [9],
[13], [18] and on a replay queue (RQ) [1], [2], [18]. We
implemented both mechanisms on the RSD to explore designs
that better suit to an FPGA.

1) IQ-based Design: The IQ-based design uses the IQ to
keep speculatively issued instructions and re-issue them on
misprediction [9], [13], [18]. We use an IQ-based design based
on the delayed selective replay method [13].

Fig. 4 (a) shows the block diagram of the implemented
design. The IQ replay control logic (RCL) interacts with the
wakeup logic to replay instructions if needed. This design
handles misprediction as follows:

1) Mispredicted instructions are invalidated by using valid
bits added to the data path for each register value in
the PRF. When a load misses in the L1DC, it resets a
valid bit for its destination register (i.e., it invalidates
its destination register). When an instruction is executed
using such invalid data, it also invalidates its destination
register. To avoid wastefully issuing many invalid in-



structions, when misprediction is detected, the IQ stops
issuing instructions until all instructions in the execution
block are drained.

2) Components speculatively updated are recovered. When
an instruction is invalidated by misprediction, the
IRL receives the instruction’s information and recov-
ers the instruction’s dependency-bit matrix column in
the wakeup logic. For these recovery actions, each
dependency-bit matrix column has a shadow copy. In
the same cycle, the IRL also resets the ready-bit table
entry of the invalidated instruction.

3) Instructions are replayed by the IQ without any special
handling, except for instructions that caused mispre-
diction (e.g., cache-missed load instructions). Such an
instruction is replayed after the cause of its execution
failure is resolved (e.g., a cache line fill). For the replay,
the RCL makes the corresponding IQ entry visible to
the select logic once it receives data from the memory
system. Once an instruction is executed without invali-
dation, it is removed from the IQ.

2) RQ-based Design: This mechanism replays instructions
by using a structure apart from the IQ: the replay queue (RQ)
[1], [2], [18]. When an instruction is issued from the IQ, it
deallocates its IQ entry immediately. Then, it is pushed into
the RQ for future replay and reissued or removed when it
becomes ready at the head of the queue.

Fig. 4(b) shows the block diagram of the implemented
design. Every cycle, instructions can be issued from either the
IQ or the RQ to the execution block. When both the IQ and the
RQ have instructions to be issued, the RQ issues preferentially.
After the instructions are issued, they are removed from the
IQ or RQ and then sent to the execution block. After flowing
to the execution block, an instruction enters the RQ if it is
invalidated. Similarly to the IQ-based design, an invalidated
instruction invalidates dependent instructions by sending data
with a valid bit reset to the PRF.

The RQ keeps and issues invalidated instructions ordered
by their time of issue; therefore, the correctness of program
execution is maintained. Each RQ entry stores all the instruc-
tions issued in the same cycle with replay bits and a latency
counter. We call a set of instructions issued in the same cycle
an instruction wave. At the end of the execution block, if
any instructions in an instruction wave are invalidated, the
instruction wave is pushed into the RQ. Each replay bit is set
when the corresponding instruction is invalidated. The latency
counter provides the mean issue latency between the pushed
RQ entry and the preceding RQ entry. For example, the latency
counter is set to 3 if the corresponding RQ entry was pushed
3 cycles after the preceding RQ entry. In this way, the RQ
entries are ordered by time of issue, meaning that the relative
issue cycles among instruction waves are maintained.

The RQ issues an instruction wave in the following manner.
When the instruction wave reaches the head of the RQ, it
decrements its latency counter every cycle. When the latency
counter becomes zero, the invalidated instructions in the
instruction wave are issued.

C. Design Comparison

The two designs described above add hardware resource
overhead on different components. The IQ-based design in-
creases the hardware resources used for the dependency-bit
matrix and the ready-bit table to enable recovery from mis-
prediction of speculative scheduling. Specifically, the shadow
copy of the bit matrix increases the number of flip-flops (FFs),
and the recovery logic for the bit matrix and the ready-bit
table increases the number of logic circuits. In contrast, the
RQ-based design consumes hardware resources on the RQ,
which mainly consists of a simple FIFO (1-read, 1-write) and
is mapped to a RAM.

The RQ-based design is better suited to an FPGA than the
IQ-based design because of FPGA’s characteristics: (1) a logic
circuit is expensively emulated by using LUTs and (2) an
FPGA usually has a lot of dual-port RAM primitives. In Xilinx
7-series FPGAs, for example, a part of LUTs can be used as
a 6-input logic or a 1-bit, 32-entry RAM, therefore their costs
on such LUTs are the same [33]; as a result, the RQ-based
design requires adding only a few LUTs for the RQ, while
the IQ-based design requires many LUTs to emulate its logic
circuits. For example, the RQ-based design consumes up to
2.2 times fewer LUTs than the IQ-based design does in our
evaluation shown in section VI-A. In an ASIC, however, a 6-
input logic requires tens of transistors, while a 1-bit, 32-entry
RAM requires hundreds, so it is unclear which design is more
resource efficient.

D. Existing Design: the OPA

To the best of our knowledge, the OPA is the only open-
source OoO soft processor that applies speculative scheduling.
The OPA integrates the IQ into the ROB and uses an IQ-based
speculative scheduling mechanism. The IQ keeps all renamed
instructions until they are committed, and it issues the oldest
ready instructions. It issues instructions depending on a load
instruction speculatively before the load accesses the L1DC.
When a load misses in the L1DC, it is marked as “not issued,”
and all dependent instructions are invalidated.

This design has some drawbacks. First, the ROB and the
IQ cannot be sized separately. This may be wasteful of the
IQ capacity, because the IQ should theoretically keep only
uncompleted instructions, so it only needs to be 30-50% of
the ROB size with almost no loss in IPC [32]. Second, the
IQ-based design can consume more FPGA resources than the
RQ-based design does. The evaluation described in section
VI-C showed that the OPA consumes more FPGA resources
than the RSD does, because the RSD uses the RQ-based design
and decouples the ROB and IQ.

V. FPGA-FRIENDLY MULTIPORT RAM OPTIMIZATION

This section describes a technique to reduce the FPGA
resources by using FPGA-optimized multiport RAMs.

A. Motivation

An OoO processor has many RAM-based components (e.g.,
the ROB). These components consist of heavily multiport
RAMs to process multiple instructions simultaneously within



TABLE II
MULTIPORT-RAM-BASED COMPONENTS IN THE RSD.

Component RAM type

Rename Unit PRF Free List Banked RAM
RMT I-LVT

Dispatch Unit

IQ Free List Banked RAM
Ready Bit Table I-LVT
WAT I-LVT
Destination RAM I-LVT

Issue Queue Payload RAM I-LVT

Reorder Buffer ROB Meta Data Banked RAM
ROB Exec. State I-LVT

Physical Register PRF I-LVT
Load-Store Unit SDA I-LVT

a single cycle. They are traditionally mapped to FFs and logic
circuits, because commercial FPGAs usually do not support
multiport RAM primitives that have two write ports or more.

We found that existing open-source OoO soft processors,
including the OPA, implement most of these components by
using FFs and logic circuits, thus presenting a great opportu-
nity to improve resource efficiency for those components.

B. RAM Construction Methods

Several studies have focused on an FPGA-optimized mul-
tiport RAM design using two-port RAM primitives on an
FPGA (e.g., BRAMs or distributed RAMs on Xilinx FP-
GAs) [5], [14]–[16]. These techniques consume far fewer
FPGA resources than an FF- and logic-based implementation
does. Unfortunately, no current FPGA synthesis tool supports
automatic detection of multiport-RAM-based modules and
mapping onto RAM primitives by using these techniques.

Banking is another powerful technique that provides mul-
tiport RAM functionality [16]. In a banked RAM, multiple
requests are distributed to multiple banks. The bank accessed
from each port is usually determined by a modulo operation on
an address. A banked RAM behaves the same as a true multi-
port RAM as long as accessed banks do not conflict. Queues
or FIFOs that push or pop multiple elements simultaneously
are suitable for a banked RAM. This is because accesses in
such queues are always consecutive; thus, the address modulo
always differs, and a bank conflict never occurs.

C. Implementation

We carefully designed the RSD by applying FPGA-friendly
multiport RAM and a banked RAM in as many components as
possible. We used the I-LVT [5], a state-of-the-art multiport
RAM design, in the RSD. Table II lists the OoO processor
components in the RSD that were implemented using the I-
LVT and a banked RAM.

We implemented three components by using a banked RAM
instead of the I-LVT: the PRF free list, the IQ free list, and
the ROB metadata. These components are queue structures, so
a bank conflict never occurs. The two free lists are queues to
provide an available index of an attached component (i.e., the
PRF or the IQ) for an incoming instruction.

The ROB is allocated by renamed instructions and deal-
located by committed instructions in program order, so most
parts of the ROB can be implemented as a queue. The execu-
tion status (e.g., completed with/without fault) part, however, is

TABLE III
MICROARCHITECTURAL PARAMETERS.

RSD OPA BOOM
Fetch/Decode/
Rename Width 2

ROB 64
PRF 64 98 64

IQ 16 64 16 Int/Mul/Div,
16 Ld/St

LDQ 16 64 16
STQ 16 - 16

Issue Port 2 Int, 1 Ld, 1 St,
1 Mul/Div

2 Int,
2 Ld/St/Mul

3 Int/Mul/Div,
1 Ld/St

Branch
Predictor Gshare + RAS Loop Pred.

+ RAS Gshare + RAS

updated out of program order in the nature of OoO execution,
which causes bank conflict in a banked RAM.

M. Rosiere et al. proposed a banking-based ROB architec-
ture with a small queue to handle bank conflict by delaying
conflicting execution status updates in the queue [23]. A
“queue-full” event stalls a processor to drain update requests,
so the processor performance decreases with this ROB design.
The authors reported up to 10% IPC degradation in compari-
son to a processor with a true multiport-RAM-based ROB.

To avoid such performance loss, we developed a hybrid
ROB design that combines a banked RAM and a true multiport
RAM. Specifically, we implemented the execution status part
by using a true multiport RAM and the rest using a banked
RAM. This optimization enables a large part of the ROB to
consist of a banked RAM, thus reducing the use of FPGA
resources without performance degradation.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the high performance and
high resource efficiency of the RSD by evaluating it in the
following three ways: (1) evaluating the operating frequency,
resource consumption, and performance of different imple-
mentations of the speculative scheduling mechanism described
in section IV; (2) measuring the impact of the FPGA-friendly
multiport RAM optimization described in section V; and (3)
comparing the RSD with several open-source OoO processors.

All evaluated implementations were synthesized by using
Synopsys Synplify Premier M-2017.03-SP1 and targeting the
Xilinx Zynq XC7Z020-CLG484-1. The left column in Table
III lists the microarchitectural parameters of the RSD. We
did not include the FPGA resources for the memory system,
including the L1IC and L1DC, in the resource evaluations.
A. Speculative Scheduling Mechanisms on FPGA

1) Experimental Setup: We built circuits for the speculative
scheduling mechanisms described in section IV (i.e., the
IQ- and RQ-based mechanisms). We first synthesized the
speculative scheduling circuits alone and observed the FPGA
resources and operating frequency. Then, we measured the
performance of each configuration by synthesizing the entire
RSD design and running the Dhrystone 2.1 benchmark. In both
evaluations, we swept the IQ entries from 16 to 32. We fixed
the RQ size to 32, because the RQ was mapped to a distributed
RAM primitive in the target FPGA, and the minimum number
of entries for the RAM primitive was 32.



TABLE IV
OPERATING FREQUENCIES OF THE IQ- AND RQ-BASED DESIGNS IN MHZ.

IQ=16 IQ=24 IQ=32
IQ-based 128.3 120.3 107.4
RQ-based 124.2 122.5 105.8

TABLE V
DHRYSTONE MIPS OF THE RSD WITH DIFFERENT SPECULATIVE

SCHEDULING MECHANISMS.

IQ=16 IQ=24 IQ=32
IQ-based 181.7 187.4 186.9
RQ-based 188.6 188.5 188.1

2) FPGA resources: Fig. 5 shows the FPGA resource
utilization of the IQ- and RQ-based speculative scheduling
mechanisms. The results show that the RQ-based design
consumes fewer FPGA resources in all configurations of
IQ size. The largest contributor is the wakeup logic, whose
main component is the dependency-bit matrix. Because of the
shadow copy of the bit matrix for misspeculation recovery, the
FPGA resources used for the bit matrix in the IQ-based design
are significantly larger than in the RQ-based design.

Although the RQ-based design consumes FPGA resources
for the replay queue, the resource overhead is much lower than
that of the wakeup logic. This is because the main component
of the replay queue is a simple 1-read, 1-write FIFO, which
can be efficiently mapped to distributed RAM primitives.

3) Operating Frequency: Table IV lists the operating fre-
quencies, with only a minor change between the IQ and RQ-
based designs. This is because the critical-path logic circuits
for all configurations are the same as the select-wakeup critical
loop shown in Fig. 2, which is not related to the logic for the
speculative scheduling mechanism.

4) Performance: Table V lists the Dhrystone MIPS
(DMIPS) results for the RSD with the IQ- and RQ-based
designs. Note that the operating frequencies of all six RSD
configurations were almost the same, at around 95 MHz,
because the critical-path logic is in the branch predictor. The
results show that the RQ-based design achieved higher DMIPS
than the IQ-based design did in all IQ-size configurations. In
particular, when the IQ size was small, the performance gap
was as large as +3.7%. This is because an instruction can free
its IQ entry as soon as it is issued in the RQ-based design,
whereas it must be kept in the IQ until it checks its execution
status in the IQ-based design. This advantage of the RQ-based
design reduces the number of instructions populated in the IQ,
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Fig. 5. FPGA resources used by the IQ- and RQ-based speculative scheduling
mechanisms.

TABLE VI
FPGA RESOURCES AND OPERATING FREQUENCY OF THE RSD WITH

DIFFERENT MULTIPORT RAM IMPLEMENTATIONS.

FF+Logic I-LVT+Bank
LUTs 28166 15379 (54.6%)
Registers 13511 8584 (63.5%)
Freq. [MHz] 89.8 95.3 (106.1%)

thus improving the performance when the IQ size is small.
5) Conclusion: We conclude that the RQ-based speculative

scheduling mechanism better suits an FPGA in terms of FPGA
resources and performance than the IQ-based mechanism does.
The main reason for the higher resource efficiency is that
the RQ is a FIFO structure that can be efficiently mapped to
FPGA RAM primitives, whereas the IQ is a complex structure
built on FFs and logic circuits. We thus used the RQ-based
implementation in the remaining evaluations.

B. Multiport-RAM-Based Optimization

1) Experimental Setup: We built two RSD designs, in
which all the components listed in Table II were implemented
with (1) FFs and logic circuits (FF+Logic) and (2) I-LVTs and
banked RAMs (I-LVT+Bank). We synthesized the complete
RSD designs and observed the required FPGA resources and
the operating frequency.

2) FPGA Resources and Operation Frequency: Table VI
lists the numbers of LUTs and registers used in each configu-
ration. The percentages in the table give the relative amount of
FPGA resources normalized to the FF+Logic configuration.
The results show that using FPGA-friendly multiport RAM
saves FPGA resources significantly, requiring 45% fewer
LUTs and 36% fewer registers.

As listed in the bottom row of Table VI, the I-LVT+Bank
configuration improved the operating frequency by 6% over
that of FF+Logic. Note that the critical path of each design is
not related to the multiport-RAM-based components listed in
Table II. Therefore, the frequency improvement could have
been caused by the decrease in FPGA resources and the
complexity of the synthesis task.

C. Core-Level Comparison

1) Experimental Setup: We compared the RSD with two
open-source RISC-V OoO soft processors: the BOOM [6] and
the OPA [29]. The BOOM is one of the most popular open-
source OoO processors1. While the BOOM can be configured
as either a 32- or 64-bit processor, we used the 32-bit con-
figuration for fair comparison. As for the OPA, to the best
of our knowledge, it is the only open-source OoO processor
optimized for an FPGA.

Table III summarizes the microarchitectural parameters of
the evaluated processors. Because of the microarchitectural
limitations of each processor, we could not use exactly the
same parameters for all processors. For example, the IQ
size and LDQ size of the OPA must be the same as the
ROB size. Therefore, we used the same parameters for the
fetch/decode/rename width and the ROB size, which dictate
the front-end bandwidth and the maximum number of in-flight

1As measured by the number of stars in GitHub.
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Fig. 6. FPGA resources used by the evaluated OoO processors.

instructions, respectively, and we otherwise used the same
parameters for as many components as possible. All processors
were evaluated with the 8KB L1IC, the 8KB L1DC and a one-
cycle latency main memory.

2) FPGA Resources: Fig. 6 shows the FPGA resource
utilization of the evaluated processors. The RSD consumes
the fewest FPGA resources. One of the largest contributors
to its high resource efficiency is the FPGA-friendly multiport
RAM optimization, as discussed in the previous section. Note
that the OPA and the BOOM implement most multiport-RAM-
based components by using FFs and logic circuits. As a result,
the RSD consumes 88%/40% of registers and 76%/36% of
LUTs in comparison to the OPA/BOOM, respectively.

The RSD and the BOOM use few block RAMs (BRAMs)
out of the 140 BRAMs on the target FPGA. The RSD uses six
BRAMs: two BRAMs for the MDP, and four for the branch
predictor. The BOOM uses three BRAMs for the branch
predictor. The OPA does not use a BRAM.

3) Operation Frequency: The first row in Table VII lists
the operating frequencies of the three processors. hdiv and
sdiv indicate the cases with and without a hardware divide
instruction, respectively. No hdiv result for the OPA is listed
because of the lack of hardware divider support. The frequency
of the RSD was lower than that of the OPA and higher than
that of the BOOM.

The frequency gap between the RSD and OPA is mainly due
to the STQ and the branch predictor, which are the critical-path
logic circuits of the RSD. The RSD has a CAM-based STQ
and a complex global branch predictor. On the other hand, the
OPA eliminates the STQ, as described in section III-B2, and
it uses a very simple branch predictor. Therefore, the OPA
has fewer timing-critical components and achieves a higher
operating frequency. In the next subsection, however, we show
that such a design can degrade the performance significantly.

The critical path of the BOOM, like the RSD, is in the
branch predictor. The BOOM has as expensive global branch
predictor; in addition, it is not optimized for an FPGA.

TABLE VII
OPERATING FREQUENCY AND DHRYSTONE MIPS (DMIPS).

RSD OPA BOOM
hdiv sdiv hdiv sdiv hdiv sdiv

Freq. [MHz] 95.3 134 71.7
DMIPS 194 177 N/A 77.5 76.1 74.5
DMIPS/MHz 2.04 1.86 N/A 0.577 1.06 1.03

4) Performance: The bottom two rows in Table VII list
the DMIPS and DMIPS/MHz results for the three proces-
sors. The RSD achieved significantly higher DMIPS and
DMIPS/MHz than either the OPA or the BOOM did. While
the OPA achieved a 1.4-times higher operating frequency, its
DMIPS/MHz was 30% of that for the RSD without a hardware
divide instruction. As a result, the RSD achieved a 2.2-times
higher DMIPS than the OPA did.

The significant performance gap between the RSD and the
OPA is mainly caused by two design differences. One is the
design of a branch predictor. The OPA has only an extremely
simple branch predictor, which does not include a branch
direction predictor, and does not perform branch prediction
except for return instructions and simple loops. Therefore the
OPA has large branch misprediction penalties on many branch
instructions. The other difference is the STQ. The STQ-less
design of the OPA can lose performance significantly, because
a store instruction stalls instruction commit by taking several
execution cycles when it becomes the oldest instruction in the
ROB. The commit delay frequently makes the ROB full, thus
stalling the front end. We evaluated the performance impact
of the lack of OoO store execution ability by using the Onikiri
software simulator [20]. Note that the simulator modeled
a conventional OoO processor rather than the OPA. The
evaluation showed that the STQ-less optimization degraded
the IPC by up to 40% (16% on average) for SPECint 2017
and SPECint 2006 [27], [28]. This result implies that we
must simultaneously optimize the design for both the operating
frequency and the IPC.

In comparison to the BOOM, the RSD achieved 2.5-times
higher DMIPS and 1.9-times higher DMIPS/MHz. One cause
of the lower DMIPS/MHz for the BOOM is that a one-cycle
bubble is always inserted whenever a branch is predicted as
taken. In contrast, the RSD can fetch instructions in every
cycle. In addition, the RSD can take advantage of speculative
scheduling, which the BOOM does not support.

VII. CONCLUSION

This paper has introduced the RSD: a high-performance,
resource-efficient RISC-V OoO soft processor. To improve its
performance, we explored FPGA-friendly implementations of
speculative scheduling and an instruction replay mechanism,
which contribute to both performance and resource efficiency.
Our experimental results showed that FPGA resources can
be significantly saved by carefully implementing multiport-
RAM-based components using state-of-the-art FPGA-friendly
multiport RAM. As a result, the RSD achieved up to 2.5-times
higher DMIPS while consuming fewer FPGA resources than
two state-of-the-art, open-source OoO soft processors did. The
source code of the RSD is here: https://github.com/rsd-devel.
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