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ABSTRACT
Out-of-order superscalar processors are currently the only architec-
ture that speeds up irregular programs, but they suffer from poor
power efficiency. To tackle this issue, we focused on how to specify
register operands. Specifying operands by register names, as con-
ventional RISC does, requires register renaming, resulting in poor
power efficiency and preventing an increase in the front-end width.
In contrast, a recently proposed architecture called STRAIGHT
specifies operands by inter-instruction distance, thereby eliminat-
ing register renaming. However, STRAIGHT has strong constraints
on instruction placement, which generally results in a large increase
in the number of instructions.

We propose Clockhands, a novel instruction set architecture that
has multiple register groups and specifies a value as “the value
written in this register group 𝑘 times before.” Clockhands does
not require register renaming as in STRAIGHT. In contrast, Clock-
hands has much looser constraints on instruction placement than
STRAIGHT, allowing programs to be written with almost the same
number of instructions as Conventional RISC. We implemented a
cycle-accurate simulator, FPGA implementation, and first-step com-
piler for Clockhands and evaluated benchmarks including SPEC
CPU. On a machine with an eight-fetch width, the evaluation re-
sults showed that Clockhands consumes 7.4% less energy than
RISC while having performance comparable to RISC. This energy
reduction increases significantly to 24.4% when simulating a futur-
istic up-scaled processor with a 16-fetch width, which shows that
Clockhands enables a wider front-end.
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1 INTRODUCTION
Out-of-order superscalar processors are currently the only archi-
tecture that speeds up irregular programs [24, 25]. The execution
of interpreted languages such as JavaScript and Python, optimiz-
ing compilation of high-level languages, social network analysis,
and video games all involve irregular processing that is difficult
to parallelize, and CPU single-threaded performance is essential
to reduce latency. To speed up these processes, recent commercial
processors integrate more massive out-of-order cores to improve
the CPU single-thread performance [5, 11, 27, 28].

However, this approach is not power efficient, as it is no longer
possible to have all cores be huge out-of-order cores [10, 27]. This
is because out-of-order processors consume a lot of power for addi-
tional controls, such as register renaming, scheduling, and mem-
ory order management, in addition to the computation itself. For
scheduling and memory order management, various lightweight
techniques have been extensively studied, which can effectively
reduce the complexity [1, 2, 15, 16, 18, 32, 34, 36, 38, 44]. For regis-
ter renaming, although there are also lightweight methods at the
microarchitecture level [16, 30, 35, 43], it is difficult to solve the
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issue. This is because false dependencies are inevitably caused as
long as register numbers are used for specifying operands as in
existing instruction set architectures (ISAs).

We focus on and review two existing instruction set architectures
in terms of inefficiencies in operand specification. Conventional
RISC specifies data transfer points by logical register numbers.
Since there are only a finite number of logical registers, this leads to
overwrite to the logical registers, which inevitably results in false de-
pendencies. Register renaming removes this false dependency and
allows efficient out-of-order execution. However, register renaming
requires complex circuits, such as multi-port memory and recovery
mechanisms, which consume significant power [13, 23, 35, 37, 43].

The other type of ISA, STRAIGHT, does not cause false depen-
dencies but does increase the number of instructions compared
to RISC [13, 17]. In STRAIGHT, data producer instructions are
specified using inter-instruction distances. STRAIGHT allocates
the destination register from a ring buffer to each instruction in
turn. Thus, no overwriting occurs, and no false dependencies are
caused. As a result, STRAIGHT does not require register renaming
to remove false dependencies. However, specifying operands by
inter-instruction distance causes strong constraints on instruction
placement, which significantly increases the number of instructions
executed (e.g., by about 30%) [13].

We illustrate this increase in instruction count using assemblies
compiled from the code in Fig. 1(a). Compared with the code com-
piled for RISC (Fig. 1(b)), the code compiled for STRAIGHT (Fig. 1(c))
has a significantly increased number of instructions. The increase
in instructions is caused by the need for additional instructions to
adjust the inter-instruction distance. This distance adjustment is
necessary because the inter-instruction distance is coupled with
instruction execution and can change with it.

We focused on the sequential register allocation from the ring
buffer in STRAIGHT. This approach does not cause false depen-
dencies but requires additional instructions, as mentioned above.
In particular, this increase is significant in loops because loop con-
stants should be held on registers, as shown in Fig. 1(c). This is
because each time a loop is executed, the dynamic inter-instruction
distance of references from instructions inside the loop to instruc-
tions outside the loop changes. If the distance did not change with
each loop iteration, there would be no need to add such instructions.
However, this problem cannot be solved if the inter-instruction dis-
tance is used.

We propose Clockhands, an ISA with multiple register groups.
In Clockhands, each operand specifies which register group and
how many times ago the value was written in that group, as shown
in Fig. 1(d). Because this form of operand specification enables
destination register allocation from a ring buffer as in STRAIGHT
(although, unlike STRAIGHT, there aremultiple ring buffers), Clock-
hands also does not cause false dependencies and does not re-
quire register renaming. Moreover, unlike the specification by inter-
instruction distance, distance change on each register group is not
coupled with instruction execution; therefore, as in RISC, operands
can be referenced by invariant expressions, and few additional
instructions are required.

The contributions of this study are as follows:

void iota( int arr[], int N ) {
int i;
for( i = 0; i < N; ++i) {
arr[i] = i;

}
}

iota:
ble [3], zero, .L1
spaddi -8
addi zero, 0     # i
sd [4], 0(sp) # _RetAddr
mv         [6]            # &arr[i]
mv         [8]            # N
j             .L3

.L2:
addi [6], 4       # &arr[i]
mv         [6]            # N relay
nop # dist. adjust

.L3:
sw [5], 0([3])
addiw [6], 1      # ++i
bne [1], [4], .L2
ld 0(sp)
spaddi 8

.L1
ret         [2]

iota:
ble a1, zero, .L1
addi a5, zero, 0      # i

.L3:
sw a5, 0(a0)
addiw a5, a5, 1         # ++i
addi a0, a0, 4         # &arr[i]
bne a1, a5, .L3

.L1:
ret       ra

iota:
ble s[2], zero, .L1
addi t, zero, 0     # i
mv      t, s[1]           # &arr[i]

.L3:
sw t[1], 0(t[0])
addiw t, t[1], 1       # ++i
addi t, t[1], 4       # &arr[i]
bne t[1], s[2], .L3

.L1:
ret       s[0]

(a) A simple code (b) A RISC (RISC-V) assembly

(c) STRAIGHT assembly

(d) Clockhands assembly

Figure 1: (a) Simple code written in C. (b) Assembly code com-
piled for RISC-V, a conventional RISC architecture. a0, a1,
and a5 are logical register names. (c) Assembly code compiled
for STRAIGHT, an existing rename-free architecture. The
shaded parts indicate instructions that have been added com-
pared with the RISC-V code. In STRAIGHT, the destination
register of an instruction is not specified and is implicitly
assigned from a ring buffer. A source operand of an instruc-
tion is specified by an inter-instruction distance, such as [1],
[3], and [6] (e.g., [3] represents a reference to the result of
three previous instructions.). (d) Assembly code compiled
for Clockhands, our proposed architecture. t and s represent
the names of hands (i.e., register groups). In Clockhands, the
destination register of an instruction is specified by a hand
identifier. A source register of an instruction is specified by
combining a hand identifier and an inter-register distance,
denoted as [2] (e.g., t[2] represents a reference to the result
of three previous registers in the hand t.).

• We proposed a novel ISA, Clockhands, which does not re-
quire register renaming.
• We identified the cause and amount of increased instruction
count in existing STRAIGHT and confirmed that it does not
occur in Clockhands.
• We presented a basic compilation algorithm for Clockhands.
• We implemented a cycle-accurate simulator and first-step
compiler for Clockhands and evaluated benchmarks included
in SPEC CPU 2006/2017 [40, 41].
• We evaluated the performance and energy consumption of
Clockhands using simulation. On a machine with an eight-
fetch width, the evaluation results showed that Clockhands
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consumes 7.4% less energy than RISC while having perfor-
mance comparable to RISC. This energy reduction increases
significantly to 24.4% when simulating a futuristic up-scaled
processor with a 16-fetch width.
• We implemented soft processors with Clockhands and RISC
in a field-programmable gate array (FPGA). The results
showed that the look-up table (LUT) consumption of the
physical register allocation stage in Clockhands is 1/4 of that
in RISC, with a configuration of an eight-fetch width.

2 EXISTING OPERAND SPECIFICATION
2.1 Conventional RISC Architecture
In conventional RISC, the data exchange point is specified by the
name of registers. A producer instruction writes the computation
result to a logical register specified by the instruction. A consumer
instruction reads the computational input from a logical register
specified by the instruction.

This format causes false dependencies owing to overwriting.
There are only a finite number of logical registers, which are data-
exchange points. The number of logical registers is typically 32 in a
RISC, which is significantly smaller than the current standard out-
of-order window size (e.g., 256) [5, 11, 27, 28]. Therefore, in-flight
instruction sequences involve much reuse of logical registers and
overwrites to logical registers occur frequently.

Register renaming is necessary to eliminate false dependencies
and efficiently execute out-of-order. In register renaming, logical
register numbers are converted to physical register numbers. The
destination register is assigned an out-of-life physical register ob-
tained from a free list. An instruction sequence whose registers are
converted to physical registers by register renaming has no false
dependencies; therefore, it can be executed and written to registers
out-of-order.

The register renaming is generally implemented with a register
map table (RMT) and dependency check logic (DCL) [20, 48]. The
RMT is a table that records mappings from logical registers to
physical registers. The DCL detects references to and updates of
the same logical register to ensure correct renaming when multiple
instructions are renamed simultaneously.

These mechanisms rapidly increase circuit area and power con-
sumption when the rename width increases [13, 23, 35, 37, 43]. In
general, the RMT consists of a multi-port RAM with a number of
ports proportional to its rename width. A multiport RAM gener-
ally increases the circuit area in proportion to the square of the
number of its ports [47]. In addition, the register rename state can
be >500 bits, which must be checkpointed several times in case
of exceptions such as branch mispredictions [23, 26, 29]. The DCL
consists of matching comparators, which compare logical register
numbers. The number of the necessary comparators is also propor-
tional to the square of the rename width [20, 48]. These prevent
the expansion of front-end widths and instruction windows and
are significant obstacles to extracting instruction-level parallelism
(ILP).

2.2 STRAIGHT Architecture
STRAIGHT is an instruction set that does not require renaming
by specifying register operands at an inter-instruction distance.

Producer
...

Loop:
...
...
...
...
...

Consumer
beq Loop

Producer
...

Loop:
mv
...
...
...
...
...

Consumer
beq Loop

(a) Loop constant.

Producer
...
...
...
...
...
...
...

Consumer

Producer
...
...
...
mv
...
...
...
mv
...

Consumer

(b) Long-life variable.

...
nop

...
j .join

...

....join

(c) nop in bottom of a basic block.

Figure 2: Three causes of the STRAIGHT instruction increase.

Because renaming is not required, it reduces power consumption
by eliminating the need for ultra-multiport memory. Moreover,
eliminating the rename stage from the front end facilitates front-end
width expansion and speeds up recovery. Furthermore, checkpoint
capacity is significantly reduced, facilitating instruction window
width expansion. Consequently, STRAIGHT can efficiently fabricate
processors capable of extracting more ILP.

In contrast, STRAIGHT has several problems, such as the in-
crease in the number of instructions, because of its unique con-
straints. In the following, we first describe the instruction repre-
sentation of STRAIGHT and then explain the problem of increased
instructions.

2.2.1 Instruction Representation. In STRAIGHT instruction words,
the source operand is specified as “use the result of how many
instructions ago.” The producer-consumer relationship is specified
directly in terms of inter-instruction distance rather than indirectly
via register numbers. One destination register is implicitly allocated
from a ring buffer for each instruction and is used in a write-once
manner. Because of allocation constraints from the ring buffer and
instruction length constraints, a maximum distance (denoted𝑀) is
defined in an ISA that can be used to specify the source operand.

In a STRAIGHT processor, the physical register file is a ring
buffer, which is why false dependencies do not occur. Due to the
constraint of maximum reference distance, the results of older in-
structions become sequentially unreferenced. This allows desti-
nation registers to be allocated sequentially from the ring buffer,
ensuring that overwrites occur only on registers whose lives have
expired. This eliminates false dependencies and enables highly
efficient out-of-order execution without register renaming.

In STRAIGHT, the process of converting register operands in
the instruction word to physical register numbers is simple, unlike
in RISC. Because the destinations in the instruction sequence are
sequentially numbered with physical register numbers, the source
physical register numbers can be obtained by simple subtraction.

2.2.2 Instruction Increase Overhead. The STRAIGHT instruction
format causes constraints on instruction placement and requires
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the execution of additional instructions to resolve the constraints.
STRAIGHT has two fundamental constraints:
• The dynamic inter-instruction distance used to specify
operands must be specified statically, not depending on the
control flow.
• References must only be to instructions within the maximum
reference distance.

To satisfy this constraint, the number of instructions is increased
in STRAIGHT in the following cases1:

(1) Fig. 2(a): Holding loop constants. A dynamic inter-
instruction distance of reference from instructions inside
the loop to instructions outside the loop changes with each
iteration. To solve this, we must add one relay instruction
within the loop.

(2) Fig. 2(b): Holding long-life variables. References that exceed
the maximum reference distance cannot be written in the
instruction word. To solve this, we must add one relay in-
struction for each𝑀 instruction.

(3) Fig. 2(c): Adjustment just before convergence point. At least
one branch instruction exists just before a convergence point
because all paths to the convergence point cannot be fall-
through. That is, the result generated by the instruction im-
mediately before the convergence point may not exist. Thus,
a program that runs correctly through any execution path
does not contain a reference to the instruction immediately
preceding the convergence point. As a result, a nop instruc-
tion is required at the end of the fall-through convergence
path.

2.2.3 Investigation of Increased Instructions. We investigated the
breakdown of these instruction increases. Fig. 3 shows the inevitable
increase in the number of instructions when the RISC instruction
sequence is converted as is to the STRAIGHT instruction sequence
(without changing the program structure, i.e., no loop unrolling,
and no addition of load/store instructions; just adding mv, nop,
and jump instructions). In our experiments here, we obtained the
lower bound by conservative counting from traces of RISC-V (a
standard RISC instruction set) [46] programs rather than by creating
a STRAIGHT compiler to investigate the inevitable increase in the
number of instructions independent of the quality of a STRAIGHT
compiler.We compiled the SPECCPU 2006/2017 benchmark [40, 41]
for RISC-V and obtained the lower bound of the instruction count
increase in STRAIGHT from a trace with 3 × 1013 instructions
executed from the beginning. The percentage varies widely from
program to program, but on average, an increase in the number of
instructions of approximately 35% is unavoidable. The breakdown
of the increase is 14% for the holding of loop constants, 14% for the
holding of long-life variables, and 6% for the adjustment near the
convergence point.

In general, variables in programs that have long lifetimes follow
a power-law distribution; therefore STRAIGHT requires many mv
instructions to hold long-life values. Fig. 4 shows the distribution of
lifetimes. This figure shows that the frequency at which a register is
defined with a lifetime of 𝑁 or more is approximately proportional
1Although there are other types of instruction increases, we do not count them because
they are hard to obtain from traces. This is not a problem because the experiment is to
find the lower bounds.

to 1/𝑁 . Hereinafter, we denote the frequency at which a register
with a lifetime of exactly 𝑁 is defined as 𝑓 (𝑁 ). The above result
can be expressed as

∑∞
𝑥=𝑁

𝑓 (𝑥) ∼
∫ ∞
𝑁

𝑓 (𝑥)𝑑𝑥 = 𝑂 (1/𝑁 ). Differen-
tiating this gives 𝑓 (𝑁 ) = 𝑂 (1/𝑁 2). This result is consistent with
that shown in the previous STRAIGHT study [13]. This is also con-
sistent with a study that shows that the count of register references
follows a power-law distribution [31].

Although the frequency of defining registers with a long life is
low, it is necessary to add the number of relay instructions pro-
portional to the length of life. When the lifetime is 𝑘 , ⌊ 𝑘

𝑀
⌋ relay

instructions are needed, and the frequency at which they occur is
𝑓 (𝑘); therefore ∑𝑃

𝑘=1𝑂
( 1
𝑘2
)
𝑓 (𝑘) ⌊ 𝑘

𝑀
⌋ ∼ 𝑂

(
1
𝑀

log 𝑃
)
relay instruc-

tions are needed in the entire program, where 𝑃 is a program size
and𝑀 is the maximum reference distance. Accordingly, the impact
of the increase in the number of instructions cannot be ignored,
although the number of registers with long life is small.

0% 10% 20% 30% 40% 50% 60%

average
657.xz_s

654.roms_s
649.fotonik3d_s
648.exchange2_s

644.nab_s
641.leela_s

638.imagick_s
631.deepsjeng_s

628.pop2_s
627.cam4_s
625.x264_s

623.xalancbmk_s
621.wrf_s

620.omnetpp_s
619.lbm_s

607.cactuBSSN_s
605.mcf_s

603.bwaves_s
602.gcc_s

600.perlbench_s
483.xalancbmk

482.sphinx3
481.wrf

473.astar
471.omnetpp

470.lbm
465.tonto

464.h264ref
462.libquantum
459.GemsFDTD

458.sjeng
456.hmmer
454.calculix
453.povray
450.soplex
447.dealII

445.gobmk
444.namd

437.leslie3d
436.cactusADM

435.gromacs
434.zeusmp

433.milc
429.mcf

416.gamess
410.bwaves

403.gcc
401.bzip2

400.perlbench

nop mv-MaxDistance mv-LoopConstant

Figure 3: The number of inevitable instruction increase. The
value is normalized by the number of total executed instruc-
tions. That is, 35% means that the number of instructions
to be executed is increased by 1.35 times as a result of the
mv/nop instructions insertion.
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Figure 4: The frequency at which a destination register is
defined with a lifetime greater than a certain number of in-
structions. This figure shows that the frequency at which a
destination register with a lifetime of 1000 instructions or
more is defined is approximately 0.001, which means that
99.9% of instruction results live in fewer than 1000 instruc-
tions.

3 CLOCKHANDS OVERVIEW
3.1 Motivation and Key Idea
The problem with conventional RISC is that it uses the operand
representation, logical register, which causes false dependencies and
thus is not suitable for out-of-order execution. Implementing the
renaming mechanism in hardware, a brute-force approach, enables
instructions to be executed out-of-order. These features do not
contribute to essential computation and cause various inefficiency.

The problem with STRAIGHT is that the number of instruc-
tions increases because of the ISA constraints. This is because the
operand specification method does not conform to the properties
of general programs, which include numerous loop constants and
long-life variables. Additional instructions to handle them also do
not contribute to essential computation and cause various ineffi-
ciency.

We propose Clockhands, an ISA that can flexibly represent gen-
eral programs and does not require register renaming even for
out-of-order execution. The key idea is to provide some register

src2 reg# src1 reg#funct
immediate src1 reg# dst reg# 

dst reg#
opcode
opcode

RISC-V

src2 dist. src1 dist.funct
immediate src1 dist. opcode

opcode
STRAIGHT

src2 dist. src1 dist.funct
immediate src1 dist. dsthand opcode

opcode
Clockhands dsthandsrc1handsrc2hand

src1hand

Figure 5: The instruction formats of Conventional RISC,
STRAIGHT, and Clockhands. Only the fields that specify
register operands are different. The “hand” field specifies a
register group.

groups (called hands) that can be referred to as “the value written 𝑘
times before”2. This enables operands to be specified without being
bound by inter-instruction distance as in RISC while retaining the
rename-free characteristic in STRAIGHT. Because the microarchi-
tecture other than the parts related to renaming is the same as
RISC and STRAIGHT, Clockhands hardware can adopt the same
ILP extraction mechanisms, including sophisticated speculation
mechanisms.

3.2 ISA Overview
Fig. 5 compares the instruction field of Clockhands with those of
a conventional RISC (RISC-V) and STRAIGHT. The fields of the
Clockhands instruction are the same as those of conventional RISC
for opcode and funct, and they differ from RISC and STRAIGHT
only in the operand specification field. The dst-hand field specifies
which register group (hand) to write to. When an instruction with
a dst-hand field (other than stores or non-JAL[R] branches) is
executed, one physical register is allocated to the instruction from
the register group specified in the dst-hand field, which becomes
the destination of the instruction. The src-hand and src-distance
fields are combined to specify the source operand. The value written
before the src-distance times of the register group specified in
src-hand becomes the source operand of the instruction.

We examined how a program is written with this instruction set.
Fig. 1 shows assemblies of an iota function shown in (a) compiled
for (b) RISC-V, (c) STRAIGHT, and (d) Clockhands. The instructions
shaded in gray are the increased instructions compared to RISC.
As can be observed, Clockhands has almost the same number of
instructions as RISC.

Fig. 6 shows how Clockhands instructions are interpreted and
how registers are rewritten during the time. The instructions ex-
ecuted at a given time and their source/destination registers are
indicated with a background color. The registers are not updated for
instructions that do not have a destination, such as the sw and the
bne instructions. Regarding an instruction with a destination, such
as the addi, the result of the instruction is written to the location
indicated by the arrow on the hand specified as the destination (t,
the hand name), and then only the specified hand is rotated. The
hands that did not become a destination (for example, v) do not
rotate; therefore, the distance remains the same, and loop constants
can be referenced at the same distance in the next iteration of the
loop, such as v[0] or v[1].

2Derived from the hands of clocks that move at different speeds.
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int* p = /* … */
for( int i = 0; i < 10; ++p, ++i ) {

*p = 42;
}

A simple code

.loop:
sw v[0], 0(t[1])
addi t, t[1], 4
addi t, t[1], 1
bne t[0], v[1], .loop

.loop:
sw v[0], 0(t[1])
addi t, t[1], 4
addi t, t[1], 1
bne t[0], v[1], .loop

.loop:
sw v[0], 0(t[1])
addi t, t[1], 4
addi t, t[1], 1
bne t[0], v[1], .loop

.loop:
sw v[0], 0(t[1])
addi t, t[1], 4
addi t, t[1], 1
bne t[0], v[1], .loop

.loop:
sw v[0], 0(t[1])
addi t, t[1], 4
addi t, t[1], 1
bne t[0], v[1], .loop

.loop:
sw v[0], 0(t[1])
addi t, t[1], 4
addi t, t[1], 1
bne t[0], v[1], .loop

s

Compiled code

t

s [0]
s[1]

t[0]
t[1]

0
8972

addi t, zero, 0
addi v, zero, 10
addi v, zero, 42

.loop:
sw v[0], 0(t[1])
addi t, t[1], 4
addi t, t[1], 1
bne t[0], v[1], .loop u v

v[0]
v[1]

42u[0]
u[1]

s [0]
s[1]

t[0]
t[1]

0
8972

v[0]
v[1]

u[0]
u[1]

s [0]
s[1]

t[0]
t[1] 0

v[0]
v[1]

u[0]
u[1]

s [0]
s[1]

t[0]
t[1]

s [0]
s[1]

t[0]
t[1]

1
8976

v[0]
v[1]

42u[0]
u[1]

s [0]
s[1]

t[0]
t[1]

1
8976

v[0]
v[1]

u[0]
u[1]

10

42
10

Time

42
10

10

10
42

8976

8976

1

8980

v[0]
v[1]

u[0]
u[1] 10

421
8976

Figure 6: How Clockhands instructions are interpreted and
how registers change over time. There are four hands (regis-
ter groups): s, t, u, and v.

3.3 Advantages
As there are multiple hands instead of one, it reduces the increase in
the number of instructions because of the three factors that occur
in STRAIGHT:

(1) The copy instructions to hold loop constants are eliminated
by generating code so that there is no instruction to write to
the hand that records the loop constants in the loop. This is
because executing an instruction in a loop does not change
the distance in that hand. In STRAIGHT, executing an in-
struction in a loop changes the distance, but in Clockhands,
this is not the case.

(2) We can reduce the copy instructions required to hold long-
life values by separating a hand where temporary values
are written from a hand where long-life values are written.
This is because the hand that is written with long-life values
advances the distance slowly. In STRAIGHT, the number of
instructions until evicted from the registers is the same as
the maximum reference distance. However, in Clockhands,
using multiple hands makes it longer.

(3) Because the jump instruction is an instruction without a dst-
hand and the distances of all hands do not change, there is
no need to adjust near the convergence point by inserting a
nop instruction.

4 CLOCKHANDS ISA
4.1 Appropriate Number of Hands
We must determine an appropriate number of hands because there
are advantages and disadvantages to increasing the number of
hands. The greater the number of hands, the more flexible code
generation becomes. However, as discussed in this section, the
hardware becomes more complex in proportion to the number
of hands. Therefore, it is necessary to find the number of hands
suitable for general programs.

To determine the appropriate number of hands, we examined
the relationship between the number of hands and the number of
move instructions to hold loop constants, which is the problem
in STRAIGHT. We define loop constants as variables that are ref-
erenced beyond the beginning of a loop, i.e., defined outside the
loop and referenced inside the loop. As described in Section 3.3,
if loop constants and variables changed in a loop can be assigned
to registers in different hands, no move instruction is necessary.
When loops with loop constants are nested, other hands must be
used. Therefore, if such loops are nested more than 𝑘 times in a
configuration with 𝑘 hands, move instructions are needed to hold
loop constants. We counted the number of such move instructions.
In this experiment, the maximum reference distance of each hand
is infinite. The results are shown in Fig. 7. These values were ob-
tained from RISC-V traces of 1013 instruction runs of all SPEC CPU
2006/2017 benchmarks.

When there are four hands, the number of copy instructions
can be reduced to 5.1% (a 94.9% reduction). When the number of
hands is increased to eight, the number of instructions can only be
reduced by an additional 1.3%. The gain from increasing the number
of hands to eight would actually be smaller because increasing the
number of hands shortens the maximum reference distance to keep
the size of the instruction word constant. Therefore, considering the
trade-off between increased hardware complexity and an increased
number of instructions, we conclude that four is the appropriate
number of hands.

From these observations, we hereinafter assume 𝐻 = 4 where 𝐻
is the number of hands. We also assume the maximum reference
distance (𝐷) is common for all hands and𝐷 = 16 due to the operand
specification field size limits. In this case, the length of the operand
specifying fields is 14 bits, which is less than that of conventional
RISC ISA, 15 bits.
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Figure 7: The remaining number of move instructions for
relaying, normalized by the number in STRAIGHT. The sub-
figure is a zoomed-in view. When the number of hands is
four and all hands are used for general purposes, 94.9% of
the move instruction for relaying is eliminated. When the
number of hands is increased to eight, only another 1.3% is
eliminated. When one hand is fixed for SP/args holding, it
increases only by 0.7%, which is acceptable.

4.2 Handling Stack Pointer
As with conventional RISC, we can place SP on a general-purpose
register. In STRAIGHT, SP is a special register [13]. SP is a very long-
life value, which does not gowell with the distance representation in
STRAIGHT. To avoid false dependencies caused by overwriting of
SP, only additions and subtractions of immediate values are allowed
for SP (SPADDi instruction). On the other hand, in Clockhands, SP
is not treated as a special register but can be placed on a general-
purpose register. This is possible because there are multiple hands.

It is useful to allocate one hand for SP. Fig. 7 also shows the
number of copy instruction reductions when one hand is allocated
for SP instead of general purpose. The increase in copy instructions
by allocating one hand for SP is only 0.7% when 𝐻 = 4. In con-
trast, the advantage of placing SP in a general-purpose register is
considerable for the following two points.

• As discussed below, placing the SP in a general-purpose regis-
ter reduces the amount of information required for recovery
and also eliminates the problem of large payload RAM size.
• It enables the creation of an instruction set uniformly; that
is, special instructions that use SP are unnecessary.

Therefore, we allocate one hand for SP.

4.3 Usage of Hands
Although all four hands are equal in the ISA, our compiler uses them
for different purposes for simplicity. The four hands are referred to
as t, u, v, and s.

• Temporary values are written in the t (temporal) hand.
• Values with a longer lifetime are written to the u hand.
• Loop constants are written to the v hand.
• A stack pointer (SP) and function arguments are written to
the s (SP) hand.

Hardware optimization based on this usage is also possible. For
example, it would be a good idea to have more physical registers in
the t hand than in the others. The value written to the v hand may
be less likely to be on the critical path. Such optimization should
be a topic for future work.

4.4 Calling Conventions
Wedesigned a calling convention that stores the function arguments
and return value in the s hand:

• The result of the JAL[R] instruction is written to the s hand,
meaning that s[0] is the return address at the beginning of
the function.
• The first argument is written to the s hand before the JAL[R]
instruction, meaning that s[1] is the first argument at the
beginning of the function.
• The second argument is written to s hand before the first
argument is written, meaning that s[2] is the second argu-
ment at the beginning of the function, and so on.
• SP is restored to s hand, meaning that s[0] is the caller’s SP
at the point of return from a function.
• The return value is written to s hand before an instruction to
restore SP to s hand, meaning that s[1] is the return value
at the point of return from a function.
• There are eight callee-saved registers, which are written to
the v hand, meaning that when it exits from a function, the
values in v[0]–v[7] are not changed.

We defined a convention for updating SP so that a reference to
s[0] yields SP. We ensure that the SP is in the s[0] in the function.
To achieve this, at the beginning of the function, we execute addi
s,s[X],-(amount) where X is the number of arguments plus one.
In addition, immediately before returning from the function, addi
s,s[1],(amount) is executed to restore the caller’s SP. Here, we
need to use s[1] to get SP value instead of s[0] because there is
an instruction to write the return value described above.

4.5 Architectural State
The architectural state of a Clockhands processor consists of the
values recorded in logical registers, a program counter (PC), and a
main memory. The writing of a register by a Clockhands instruc-
tion can be logically interpreted as 1) shifting the position of all the
values recorded in the destination hand by one, 2) discarding the
oldest value, and 3) writing a new value. With this context, Clock-
hands ISA defines 64 logical registers, t[0]–t[15], u[0]–u[15],
v[0]–v[15], s[0]–s[14], and zero.

Four RPs (described in Section 5.1) in a Clockhands processor
are not included in the architectural state, similar to the RMT in
RISC one. As described above, Clockhands ISA can be interpreted as
having logical registers that are shifted. The RPs are just hardware-
optimized implementations used to avoid shifting the actual data
positions.

On a context switch, operating systems (OSs) generally save and
restore only an architectural state, which is also true for Clockhands.
The OS can be implemented without awareness of how the logical
registers are internally implemented, even if they are implemented
using the RPs or the RMT.
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Figure 8: Out-of-order processor pipeline of conventional
RISC, STRAIGHT, and Clockhands. The only difference is
the physical-register-allocation stage (rename stage or RP-
calculation stage).

5 MICROARCHITECTURE
A Clockhands processor has a hardware architecture similar to
that of RISC and STRAIGHT. Fig. 8 shows block diagrams of (a)
conventional RISC, (b) STRAIGHT, and (c) Clockhands out-of-order
processors. They are identical except for the part where the register
operands specified in the instruction word are converted to physical
registers.

5.1 Register Pointer (RP) Calculation Stage
The primary difference in microarchitecture is the part that con-
verts register operands to physical registers (RP-calculation stage).
Fig. 9 shows the RP-calculation stage of a Clockhands processor. A
Clockhands processor has four pointers, RPs, to record the range of
physical registers assigned to the four hands. The physical register
number of the destination of an instruction is the one pointed to by
one of the four RPs, selected by the dst-hand field in the instruction
word. The physical register number of the source operand is one
of the four RPs selected by the src-hand field of the instruction
word, subtracting the src-distance. After this calculation, the RP is
incremented by one only for the hand specified by the dst-hand.

The RP-calculation stage allocates physical registers from the
four ring buffers but must be stalled accordingly to avoid false
dependencies. In a Clockhands processor, the physical registers
have linear addresses, as in other architectures. One difference is
that they are statically partitioned into four and used as four ring
buffers. Each RPwraps around within each partitioned range.When
a wraparound occurs, the physical registers are reused, but it is
necessary to ensure that no false dependencies occur when this
happens. To satisfy this constraint, a Clockhands processor must
stall the RP-calculation stage when a register located within the
maximum reference distance from the value of the RP of the oldest
in-flight instruction is about to be allocated.
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Figure 9: RP-calculation stage of the Clockhands processor.
In this stage, the physical register numbers of a destination
operand and source operands are determined. The implemen-
tation in this figure calculates RPs sequentially for simplicity
but can be optimized for latency as described in Section 5.1.

For simplicity, the diagram shown in Fig.9 calculates the RP se-
quentially, but this process can be optimized for latency without
significantly increasing the circuit area as follows. The optimization
can be done by counting 𝑃 , the number of preceding instructions
that write to each hand, for every instruction processed simulta-
neously in a group. In this calculation, the result can be shared
among instructions to reduce the amount of circuit and delay, as in
a tree that calculates the prefix sum in a parallel prefix adder [47].
For example, if a structure similar to the Brent-Kung tree [4, 47]
is used, the delay is 𝑂 (log𝑊 ) and the amount of circuit is 𝑂 (𝑊 ),
assuming the parallel processing width is𝑊 . Then, the operands
of each instruction can be obtained with short latency by adding
𝑃 and the RP at the beginning of the group. The amount of circuit
and latency is sufficiently small compared with those of the DCL
used in the existing renaming logic described in Section 2.1.

5.2 Recovery Mechanism
Processors with Clockhands recover from mispredictions and ex-
ceptions by restoring the RP using the information stored in the
ROB. An instruction executed in a mispredicted path may write an
incorrect value to a physical register, but this does not affect the
correctness of the execution as in existing processors. This recov-
ery mechanism by restoring pointers is the same as one typically
performed in ring buffers such as ROBs and LSQs, where entries
are sequentially allocated.

Clockhands processor requires less information for recovery
than RISC one. Table 1 summarizes the amount of information
required for recovery of the physical register allocation stage for
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Table 1: Recovery information size (checkpoint size) for each
architecture.

Architecture Recovery information size
Conventional RISC 63× ∼9 bits ∼570 bits

STRAIGHT ∼9 bits + 64 bits ∼70 bits
Clockhands 4× ∼9 bits ∼36 bits

C
llvm
IR

Compiler
front end

Instruction 
select

IR to IR 
optimization

Clock
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binary

RISC 
binary

Register 
assignment

Hand 
assignment

Distance 
fixing

Distance 
bounding

STRA
IGHT 
binary

Figure 10: Compilation flow comparison.

(a) RISC-V, (b) STRAIGHT, and (c) Clockhands. The value in the
rightmost column assumes that the physical register number can
be specified in 9 bits. Conventional RISC requires ∼570 bits of in-
formation per checkpoint to recover the correspondence between
logical and physical registers. Although STRAIGHT requires only
∼9 bits of information per checkpoint to recover the correspon-
dence between logical and physical registers, 64 bits are required
to recover the value of SP. Clockhands requires ∼36 bits of informa-
tion per checkpoint to recover the correspondence between logical
and physical registers. As SP is stored in general-purpose registers,
restoring RP automatically recovered its logical state, just as RISC
does by restoring RMT. On the other hand, STRAIGHT processor
holds SP in a special register, thus it needs to restore SP itself.

5.3 Simultaneous Multi-threading
While conventional simultaneousmulti-threading (SMT) processors
dynamically share physical registers among threads, Clockhand-
s/STRAIGHT processors must partition physical registers statically
because Clockhands/STRAIGHT need to allocate physical registers
sequentially. This static partitioning may slightly reduce the effi-
ciency of physical register usage, but it does not cause significant
overhead in typical SMT processors for the following reason. In
SMT processors, queues such as ROB and LSQ, whose entries are
also allocated sequentially, are typically statically partitioned [21],
which limits the number of in-flight instructions held by each thread.
As a result, the number of physical registers allocated to in-flight
instructions is also limited.

6 CLOCKHANDS COMPILER
6.1 Compilation Flow for Clockhands
A Clockhands compiler differs from a conventional RISC compiler
only in the register allocation phase. Fig. 10 compares the compile
flow of conventional RISC, STRAIGHT, and Clockhands. In a Clock-
hands compiler, we can implement the interpretation of high-level
programming languages and instruction selection in the same way
as in RISC. However, the subsequent processes differ from those of
a RISC compiler. In the hand assignment phase, which is specific to

int N = 300;
for( int i = 0; i < N; ++i ) {

for( int j = 0; j < N; ++j ) {
a[i] += b[j];

}
}

(a) A simple code of nested loops. (b) A graph where loop constants are 
vertices and edges are relations that 
cannot be assigned to v registers together.

i

N

&a

&b

Outer loop’s 
constants

Inner loop’s 
constants

Figure 11: Independent set problem in v-hand assignment
procedure.

compilers for Clockhands, a hand is first assigned to the destination
operand of each instruction. Thereafter, the reference distances are
determined in the same way as for STRAIGHT, and this procedure
is repeated for each hand. The process of hand assignment, which
is specific to Clockhands, is described below.

6.2 Hand Assignment Algorithm
Our Clockhands compiler assigns hands to each instruction as
follows: SP, function arguments, and the return value of a function
are assigned to the s hands. Other loop constants are assigned to
the v hand if possible. The details of this process are described
below. The callee-saved registers are also assigned to the v hand.
Otherwise, when an instruction result has a lifetime less than the
maximum reference distance, it is assigned to the t hand. The
remainder is assigned to the u hand.

The v hand assignment is performed by determining a maxi-
mal independent set. When there is a nested loop, as depicted in
Fig. 11(a), and both have loop constants, we cannot assign the v
hand to all the loop constants. For example, we cannot assign v
hand to N and i together. This is because, in such a case, updating i
would cause a write to v hand, which would change the distance to
N. We can find out which loop constants can be assigned to v hand
by considering a graph with loop constants as vertices (Fig. 11(b)).
Each edge connects two vertices that correspond to two variables
that cannot be assigned to v hand together. This is a relationship of
two variables such that the location where one variable is defined
is within the range where the other variable is a constant.

By solving the independent set problem for this graph, we can
determine which loop constants can be assigned to the v hand. For
example, {i} (only i is assigned to the v hand) is a solution of the
problem and {N,&a,&b} (N, &a, and &b are assigned to the v hand)
is another solution. These solutions indicate a set of loop constants
that can be assigned to the v hand together. It is helpful to find
a maximal independent set using a greedy heuristic, as shown in
Algorithm 1, because assigning the inner loop constant to the v
hand is preferred for better performance.

6.3 Advanced Register Assignment
In Clockhands, in addition to those mentioned in Section 2, there are
other cases where the instruction increase that occurs in STRAIGHT
can be eliminated, as shown in Fig. 12. The instruction sequence
depicted in Fig. 12(a) has execution order constraints that are not
coherent across multiple paths. In such a case, a compiler reorders
instructions to satisfy the execution order constraint in STRAIGHT.
If the constraint cannot be satisfied by reordering, transfer instruc-
tions that copy live variables are inserted to keep the reference
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Algorithm 1 v hand assignment algorithm
𝑈 ← all loop constants
for 𝑥 ∈ 𝑈 do
if ∃𝑦 ∈ 𝑈 s.t. the initial value of 𝑦 is defined in the loop
associated with 𝑥 then
𝑈 ← 𝑈 \ {𝑥}

end if
end for
Assign v hand to each 𝑥 ∈ 𝑈 .

.join

.join

(2) addi t, u[0], 2
j .join

(6) add u, t[1], t[2]
j .join

(5) ld t, t[8], 0 .

......

.join

(3) addi t, u[0], 3
(1) ld u, t[8], 0 (4) ld t, t[8], 0 .

(a) An SSA-form code. 

(b) STRAIGHT code, which contains one mv instruction.

(c) Clockhands code, which contains no mv instruction.

PHI  (3)or(4)
PHI  (2)or(5)
PHI  (1)or(6)

......

PHI  (3)or(4)
PHI  (2)or(5)
PHI  (7)or(6)

......

PHI  (3)or(4)
PHI  (2)or(5)
PHI  (1)or(6)

......

......

(6) add [2], [1]
j .join

(5) ld [9], 0.
(4) ld [9], 0.

......

(2) addi [2], 2

j .join

......

(3) addi [1], 3
(1) ld [9], 0

(7) mv [3]   .

(2) addi (1), 2

j .join
(6) add (4), (5)

j .join

(5) ld (…), 0.

......

(3) addi (1), 3

(1) ld (..), 0 (4) ld (…), 0.
......

Figure 12: Advanced register assignment.

distance constant [17]. For example, in Fig. 12(b), the mv instruction
is inserted for transfer. Conversely, in Clockhands, we can generate
code without the addition of mv instructions using different des-
tination hands, as depicted in Fig. 12(c). However, how to do this
with a compiler is a topic for future research.

7 EVALUATION
7.1 Methodology
We evaluated the performance, energy consumption, and resource
consumption of Clockhands, STRAIGHT, and existing RISC. We

also developed a Clockhands soft-core processor written in Sys-
temVerilog and used it for hardware evaluation.

We used a cycle-accurate simulator, Onikiri2 [45], for the per-
formance evaluation and McPAT [20] for the energy consumption
evaluation. Onikiri2 is an execution-driven simulator similar to
gem5 [3], but it can simulate more detailed pipeline behavior, in-
cluding various speculations and replays. We implemented a Clock-
hands 32-bit 166-instruction RV64G-compatible ISA on Onikiri2.
We also extended Onikiri2 to simulate the Clockhands pipeline
behavior accurately. The parameters of the processors used in the
evaluation are listed in Table 2. The parameters of the six-fetch
model are derived from the parameters of Apple M1 processor [14].
In the larger models, we aggressively enlarged the ROB because
it does not have complex functions such as associative search in
the current mainstream architecture, while conservatively enlarged
the scheduler and the load-store queue because of their complex
structure and the controversial nature of their expandability.

The benchmark programs used for our evaluation were bzip2,
mcf_s, lbm_s, and xz_s included in SPEC2006/2017 [40, 41] and
CoreMark [8]. We use these benchmarks, which are written entirely
in C, because we are currently only able to develop a C compiler, as
C++/Fortran compilers are very complex and require a great deal of
effort to develop. We used representative regions for each program
used in a previous STRAIGHT study [17]. We modified them so
that they contain >50M instructions for SPEC benchmarks.

Table 2: The parameters of the processors used in the simu-
lation.

4-fetch 6-fetch 8-fetch 12-fetch 16-fetch
Front-end width 4 6 8 12 16

Front-end latency
fetch(3) + decode(1) + [rename(2) +] dispatch(1)

RISC-V: 7 cycles
STRAIGHT, Clockhands: 5 cycles

Issue width 8 16
Issue latency 4 cycles (payload RAM read + register read)

Execution units
⌈ 1
2× →

⌉ Int×8, Float×4, Load×3, Store×2,
iMul×2, iDiv×1, fDiv×1

Reorder buffer (𝑅) 256 640 1024 2048 4096
Register width 64 bits

Logical registers RISC-V: Int×31, FP×32, STRAIGHT: Unif.×127
Clockhands: s×15, t×16, u×16,v×16

RISC-V: Unified×𝑅
Physical registers STRAIGHT, Clockhands: Unified×(128 + 𝑅)⌈ 1

2× →
⌉

27-read, 14-write
Physical register s×(32 + 2𝑅/64), t×(32 + 48𝑅/64),
quota for each hand u×(32 + 9𝑅/64), v×(32 + 5𝑅/64)
Scheduler (𝑆) 128 192 256 384 512
Load-store queue Load capacity: 𝑆/2, Store capacity: 3𝑆/8
Branch predictor 8-component TAGE [33], 130-bit history, 8 KiB
Branch target buffer 4-way, 8192 entries
Return address stack 16 entries
Mem. dep. predictor Store set [7], 512 producers, 4096 store IDs
Load lat. predictor Optimistic (always assumes L1D cache hit)
L1I cache 128 KiB, 8-way, 64B line, 3 cycles
L1D cache 128 KiB, 8-way, 64B line, 3 cycles

L2 cache 8 MiB, 16-way, 64B line, 12 cycles
Stream prefetcher [39], distance 8, degree 2

Main memory 80 cycles
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Figure 13: Performance comparison. The values are normalized to those of RISC-V’s 4-fetch model. R, S, and C indicate
RISC-V, STRAIGHT, and Clockhands, respectively. 4f, 6f, 8f, 12f, and 16f indicate 4-fetch, 6-fetch, 8-fetch, 12-fetch and 16-fetch,
respectively.

The benchmark programs were compiled using LLVM [19].
Our compiler was built on top of LLVM version 12.0.1 and im-
plemented the algorithms described in Section 6. The compiler
for RISC-V is one with the same version of LLVM, and the com-
piler for STRAIGHT was obtained from the authors of the existing
study [13].

7.2 Results
1) Performance: Fig. 13 shows the performance of each model. This
figure shows the inverse of the cycles elapsed to run the benchmark,
normalized by the value in RISC-V. This result indicates that the
performance of Clockhands is almost the same as that of RISC-V
while providing the advantage of no need for renaming. In the
6-fetch and above models, the performance improvement continues
up to 16-fetch, even though we used a configuration of the same
back-end complexity. The performance of Clockhands is 97.9%,
97.3%, 98.9%, 100.0%, and 101.6% of that of RISC-V, in 4-fetch, 6-fetch,
8-fetch, 12-fetch, and 16-fetch model, respectively. The performance
of Clockhands is 9.9%, 7.6%, 6.6%, 6.5%, and 7.2% higher than that
of STRAIGHT, in 4-fetch, 6-fetch, 8-fetch, 12-fetch, and 16-fetch
model, respectively.

Clockhands shows equal to or better performance than
STRAIGHT in all the benchmarks. In CoreMark, Clockhands shows
higher performance than RISC-V due to faster recovery from branch
mispredictions, similar to STRAIGHT. In bzip2, Clockhands shows
performance equal to or better than RISC-V due to faster recovery
from branch mispredictions. Although STRAIGHT has the same
property, the performance degradation due to increased instruction
count is larger. Inmcf_s, Clockhands shows lower performance than
RISC-V because it still has more instructions than RISC-V, although
the number of instructions is greatly reduced than STRAIGHT, as
described below. In lbm_s, as described below, unlike STRAIGHT,
Clockhands succeeded in handling long-life values and was able to
reduce the number of mv and load instructions, so its performance
is about the same as RISC-V. In xz_s, STRAIGHT and Clockhands
show performance degradation due to instruction execution order
that is different from RISC-V as a result of distance adjustment. This
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Figure 14: Energy comparison. The values are normalized to
those of RISC-V’s 4-fetch model. R, S, and C indicate RISC-V,
STRAIGHT, and Clockhands, respectively.

is because xz_s is a program that uses up the integer arithmetic
unit, and the instruction order greatly affects the latency.

2) Energy Consumption: Fig. 14 shows the energy comparison.
The Clockhands processor saved 7.4% in the 8-fetch model, 17.5% in
the 12-fetch model, and 24.4% in the 16-fetch model, compared to
the RISC-V one owing to the elimination of the renaming process.
The adoption of distance expressions has eliminated the need for
renaming, and the number of instructions has hardly increased,
resulting in a significant reduction in power consumption.

3) Instruction Breakdown: Fig. 15 shows a breakdown of the types
of instructions executed. The number of instructions executed in
Clockhands was reduced by greatly reducing the number of mv
and nop instructions. In addition, the number of load and store
instructions, which tended to increase in STRAIGHT, was reduced.
As a result, the number of instructions executed in Clockhands was
successfully reduced to the same level as RISC-V. Our compiler is
still underdeveloped, and we expect to further reduce the number
of instructions by further improvement.
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4) Hand Usage: Fig. 16 shows the distribution of which hand
was written to. As mentioned in Section 4.3, the t hand, where
temporary values are written, is the most commonly used. The v
hand, which holds loop constants, is written less often but readmore
often, which is consistent with what would be expected from the
nature of the loop constants. Also, the s hand is written extremely
few times but read many times; this is because it holds values that
are referenced many times, such as SP and arguments. In mcf_s,
where there are many function calls, the s hand is often used to
put in arguments, as described in Section 4.4.

5) Register Lifetime: Fig. 17 shows the register lifetime. In
STRAIGHT, the distribution ends at 127, the maximum reference
distance. RISC-V and Clockhands have similar distributions, which
indicates that Clockhands successfully handles long-life values.
Comparing RISC-V and Clockhands, Clockhands has longer verti-
cal and horizontal lines, especially in lbm_s. This is becausemultiple
variables co-located in one hand will have similar lifetimes.

To further clarify why Clockhands ISA was able to address long-
life values, we will review the lifetime for each hand. Fig. 18 shows
the register lifetime for each hand. The lifetime of registers in the

Table 3: Resource usage of soft processors.

Phys. reg. alloc. stage Overall
Architecture Look-up tables Flip-flops LUTs FFs

4-way
RISC-V 2310 998 101483 31081

STRAIGHT 442 572 96631 28769
Clockhands 401 560 99913 30968

8-way
RISC-V 12309 7521 190380 45708

STRAIGHT 787 1092 188118 43928
Clockhands 761 1086 185701 42254

16-way
RISC-V 30230 14938 350377 63338

STRAIGHT 1641 2132 354105 57214
Clockhands 1432 2162 349074 55220

t hand was as short as about 100 because temporary values are
written in it as described in Section 4.3. The lifetime of registers
in the u hand, where values with longer lifetime are written, was
longer than that of the t hand. The lifetime of registers in the v hand,
where loop constants are written, was more longer. The lifetime
of registers in the s hand, where SP and function arguments are
written, had different properties than the others. It is very short
in mcf_s and very long in the others, which is very different. This
is due to the frequent function calls in mcf_s. In general, SP and
function arguments have a long lifetime, but this is not the case
with frequent function calls. The reason Clockhands ISA can deal
with long-life values is that we have used hand in this way.

6) Hardware Complexity: Clockhands architecture does not com-
plicate hardware. The resource usage of (a) RISC-V, (b) STRAIGHT,
and (c) Clockhands processors for FPGA is summarized in Table 3.
For our evaluation, we used RV32IM-compatible FPGA-optimized
out-of-order soft processor RSD [22] as a baseline, but with modifi-
cations for each architecture. We evaluated three front-end widths:
4, 8, and 16. We confirmed that CoreMark [8] program runs cor-
rectly and the soft processor runs on Xilinx Virtex UltraScale FPGA
XCVU440. This table shows that a Clockhands processor can be
built with equal or fewer resources than a RISC-V processor. Thanks
to the distance representation, a lightweight physical register al-
location is realized. This property is universal regardless of fetch
width.

8 RELATEDWORK
Some ISAs feature register windows [9, 12]. The register window
switches a set of registers at the time of function calls and re-
turns, eliminating the need to execute load/store instructions to
spill values. However, when the register window is exhausted, it
is necessary to save register values to memory through complex
hardware mechanisms or interruptions. The register operand for-
mat proposed in this paper has similarities with register windows
in that it reduces the number of instructions by storing values with
significantly different lifetimes in a group of other registers. One sig-
nificant difference is that the management of registers is performed
purely in software and does not require hardware support.

IA-64 also has a register rotation mechanism [12]. Register rota-
tion is a cyclical replacement of some register names, eliminating
false dependencies even when logical registers with the same name
are used and simplifying the description of software pipelining.
The register operand format proposed in this paper has similarities
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Figure 18: Frequency at which a destination register is defined with a lifetime greater than a certain number of instructions
(same as Fig. 4). The vertical axes indicate definition frequency and the horizontal axes indicate register lifetime.

with register rotation in that only the names of some registers are
cyclically replaced so that false dependencies do not occur. A cru-
cial difference is that the proposed method guarantees that there
are no false dependencies at the ISA level, even when out-of-order
execution is performed.

In dataflow architecture, a sticky bit has been proposed [42]. In
dataflow, produced values vanish when they are consumed. How-
ever, such a scheme is unsuitable for frequently referenced values,
such as loop constants. Therefore, a sticky bit, that is, a marker, is
used to prevent the value from vanishing even if it is consumed.
The register operand format proposed in this paper is similar to
sticky bits in that it provides special treatment to values referenced
many times, such as loop constants. However, the proposed method
provides a general-purpose register use not limited to holding loop
constants, such as holding SP or a value with a slightly longer
lifetime.

EDGE architecture [6] improves power efficiency by introducing
direct communication between closely located instructions, exploit-
ing the fact that many computational results are short-lived and
references are often resolved locally. STRAIGHT improves power
efficiency by introducing a static guarantee of register lifetime,
exploiting the same property. Clockhands also improves power
efficiency by introducing lifetime classification, exploiting a more
generalized property that many instructions refer to recently gen-
erated results within each lifetime class. Clockhands can efficiently
handle both short-lived and long-lived values in a single framework.

9 CONCLUSION
In this paper, we proposed Clockhands, an ISA with a register
operand specification scheme that has multiple register groups and
specifies the value as “the value written to this register group 𝑘

times before.” This scheme enables operands to be specified without
being bound by inter-instruction distance, as in RISC, while retain-
ing the rename-free characteristic of STRAIGHT. A Clockhands
processor is similar to a RISC processor except for the physical reg-
ister allocation mechanism, and it can exploit existing sophisticated
speculation mechanisms. In this study, in addition to the Clock-
hands instruction set architecture, its RTL design and compiler are
provided, and its performance and energy consumption are evalu-
ated using simulation. The evaluation results show that Clockhands
processors do not increase complexity over RISC processors, and
the performance of Clockhands processors was equivalent to that
of RISC processors.
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A ARTIFACT APPENDIX
A.1 Abstract
We have prepared this artifact for you to reproduce the results
of Fig. 3, 4, 7, 13, 15, 16, 17, and 18. Following the instructions
below, you can make CoreMark binaries for RISC-V, STRAIGHT,
and Clockhands and run them on Onikiri2, a processor simulator.

A.2 Artifact check-list (meta-information)
• Program: Onikiri2, sasm2, clockhands-assembler2, musl, and Core-

Mark are included in our artifact. RISC-V GNU Compiler Toolchain
and Clang compiler are available in public GitHub repositories. You
can use SPEC 2006/2017 if you have a license.
• Compilation: g++ 11.4.0.
• Run-time environment: Ubuntu 22.04 LTS, GNU tar 1.34, GNU

Make 4.3, GNU Awk 5.1.0, GNU sed 4.8, GNU grep 3.7, perl v5.34.0;
Windows 11, Excel version 2307.
• Metrics: Improvement in the number of cycles taken to execute a
measurement section (simulated value, not wall-clock time).
• Output: XML file that contains simulation results. We also provide
Excel files to make figures.

• Experiments: Download our artifact; prepare binaries of Core-
Mark; build Onikiri2; run Onikiri2; observe results.
• How much disk space required (approximately)?: 2GiB.
• How much time is needed to prepare workflow (approxi-
mately)?: For building GCC, it takes about 1 hour. The others
are done in five minutes.
• How much time is needed to complete experiments (approxi-
mately)?: Five minutes for Fig. 13, 15, 16, 17, and 18. For Fig. 3, 4,
and 7, they require 3 × 1013 instructions executions, which take 60
days. You can shorten the measurement region by rewriting input
parameter files.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Creative Commons Attri-
bution 4.0 International, except for third-party codes.
• Archived (provide DOI)?: 10.5281/zenodo.8218698

A.3 Description
A.3.1 How to access. Our artifact is hosted on Zenodo at
https://doi.org/10.5281/zenodo.8218698.

A.3.2 Hardware dependencies. Any hardware capable of compiling
Onikiri2 [45].

A.3.3 Software dependencies. We have tested our artifact with the
compiler and run-time environment listed in Section A.2. It may
work in other environments, such as another Linux Distribution,
but we have yet to check.

A.3.4 Data sets. Our artifact includes assemblers, a simulator,
and CoreMark necessary for the experiments, except for RISC-V
GNU Compiler Toolchain and Clang compiler. If you have a SPEC
2006/2017 license and want to try bzip2, mcf_s, lbm_s, and xz_s,
please get in touch with us. We will give you the assemblies of
them.

A.4 Installation
Download our artifact from Zenodo and extract it.

$ wget https://zenodo.org/record/8218698/files/
Clockhands_Artifact_MICRO2023.tar?download=1
$ tar xvf Clockhands_Artifact_MICRO2023.tar
$ cd Clockhands_Artifact_MICRO2023

You will find two README files,
ClockhandsEvaluation/README.md and
ClockhandsPreliminaryExperiments/README.md. Please
follow their instructions to install RISC-V GNU Compiler
Toolchain, Clang compiler, and other required software.

A.5 Experiment workflow
The workflow of the experiment is outlined as follows:

(1) Make CoreMark binaries for the three ISAs. For RISC-V, make
a binary from the source code in our artifact with Clang com-
piler and assemble it using RISC-V GNU Compiler Toolchain
and musl. For STRAIGHT and Clockhands, make a binary
from the assemblies of CoreMark in our artifact. To do this,
you can use pre-built binaries of sasm2 (a STRAIGHT assem-
bler) and clockhands-assembler2 included in our artifact.

(2) Build Onikiri2.
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(3) Copy the three CoreMark binaries and the Onikiri2 binary
to the evaluation directory.

(4) Run Onikiri2.
For detailed instructions, refer to the README files.

A.6 Evaluation and expected results
All results of the experiment are output to XML files in directories
ending with “result.” You will find instructions on extracting the
results in the Excel files we provide. Extract and compare the results
with the expected ones in the Excel files. Finally, you will get the
same charts as in Fig. 13, 15, 16, 17, and 18. You will also get similar
charts as Fig. 3, 4, and 7.

A.7 Experiment customization
If you have enough time, you can obtain the same charts as Fig. 3,
4, and 7 by running 3 × 1013 instructions. It will take 60 days.

A.8 Methodology
Submission, reviewing, and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Abstract
	1 Introduction
	2 Existing operand specification
	2.1 Conventional RISC Architecture
	2.2 STRAIGHT Architecture

	3 Clockhands Overview
	3.1 Motivation and Key Idea
	3.2 ISA Overview
	3.3 Advantages

	4 Clockhands ISA
	4.1 Appropriate Number of Hands
	4.2 Handling Stack Pointer
	4.3 Usage of Hands
	4.4 Calling Conventions
	4.5 Architectural State

	5 Microarchitecture
	5.1 Register Pointer (RP) Calculation Stage
	5.2 Recovery Mechanism
	5.3 Simultaneous Multi-threading

	6 Clockhands compiler
	6.1 Compilation Flow for Clockhands
	6.2 Hand Assignment Algorithm
	6.3 Advanced Register Assignment

	7 Evaluation
	7.1 Methodology
	7.2 Results

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Methodology


