
SurgeFuzz: Surge-Aware Directed Fuzzing for CPU Designs
Yuichi Sugiyama, Reoma Matsuo, Ryota Shioya

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
Email: {sugiyama, matsuo}@rsg.ci.i.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

Abstract—Various verification methods have been proposed for bug
detection in central processing unit (CPU) designs, yet their effectiveness
remains insufficient. We have observed that such CPU bugs often occur
in exceptional handling, such as pipeline stalls and flushes. We found
that corner cases in such exceptional handling can be effectively verified
through situations we term a ’surge’. A surge refers to a situation where
events leading to exceptional handling occur frequently over a short
period of time. For instance, a surge caused by frequent queue insertions
can eventually fill the capacity, triggering exceptional handling such as a
pipeline stall. We propose a novel fuzzing method for CPU designs, named
SurgeFuzz, that intentionally generates surges. SurgeFuzz mutates input
instruction sequences based on annotations to increase the occurrence
of surges. This results in a higher density of event occurrences, thereby
enabling efficient verification of corner cases in exceptional handling.
We evaluated SurgeFuzz on a large processor design and found several
unknown hardware bugs that are difficult to find with existing methods.

Index Terms—Fuzzing, Directed fuzzing, CPU verification, RISC-V

I. INTRODUCTION

Bugs in CPU designs can lead to a multitude of serious issues,
ranging from erroneous execution results and system freezes to vul-
nerabilities enabling unauthorized data access [1]. Indeed, numerous
bugs have been detected in commercial x86 and ARM CPUs, which
include deadlocks from improper hazard handling and corruption of
execution results due to flawed memory speculation [2]–[5] These
bugs frequently emerge in complex microarchitectural corner cases,
rendering them generally hard to detect. Furthermore, unlike software
bugs, these are often challenging to rectify post-production.

Although various verification methods for detecting CPU bugs
have been proposed [6]–[15], their efficacy in bug detection remains
insufficient. This is mainly because CPU designs are generally large
and complex, and thus their state space that needs to be explored is
very large. Static verification methods employing model checking or
symbolic execution [6]–[8] can often result in state space explosion,
making them challenging to apply to large CPU designs [1], [16].
Dynamic verification methods, which typically utilize randomly gen-
erated instruction sequences, are comparatively easy to apply [9]–
[15]. More advanced dynamic verification methods based on fuzzing
have been studied in recent years [17]–[25]. Fuzzing generally iterates
test input generation, utilizing feedback such as coverage during
testing, thereby exploring the hardware state space more effectively
than traditional dynamic verification methods. However, the state
space in CPUs explored by many fuzzing methods is still very large,
and these methods have not been able to effectively detect bugs.

Bugs in CPUs, as mentioned above, are known to occur in corner
cases during exceptional handling, such as stalls or flushes when
queues fill up or request conflicts occur [21], [26]–[29]. This is
because the logic of such exceptional handling is typically complex
and their corner cases are often overlooked, and because such corner
cases rarely occur in practice. For example, it is reported that almost
all design bugs in the OpenSPARC processor were found in the
load/store unit and the trap logic unit, which deal with many such
corner cases [26]. Because these corner cases arise from interactions

This work was partially supported by JST PRESTO JPMJPR21P5 and JSPS
KAKENHI JP20H04153.

between various CPU modules and pipeline control, it is difficult to
find them through simple unit tests.

Developers are often aware that bugs are likely to occur in corner
cases during exceptional handling, and it is common for developers
to manually create test inputs to verify specific corner cases [27].
However, generating instruction sequences that cause such corner
cases is generally challenging and requires significant effort. For
example, one of the bugs discovered in this paper is triggered by
repeating many replays due to a memory speculation failure while
recovering from a branch misprediction. Creating an instruction
sequence that artificially causes such a situation requires deep knowl-
edge of microarchitecture and considerable skill. The instruction
sequence that causes such corner cases is strongly dependent on
the CPU configuration and behavior, and therefore, small changes
in the configuration parameters often prevent the intended corner
case from occurring. Dynamic verification methods and fuzzing can
theoretically generate inputs to test such corner cases. However,
since these methods generally generate test inputs by exhaustively
exploring the entire state space of the CPU, it is difficult to efficiently
generate instruction sequences that induce specific corner cases, and
even if they can be generated, it takes a long time.

We found that corner cases in such exceptional handling can
be effectively verified through situations that we term a surge.
A surge refers to a situation when events leading to exceptional
handling occur more frequently within a short period than usual.
These events include, for example, the insertion of elements into
queues or buffers, access conflicts with banks/buses/shared resources,
and the occurrence of speculation misses. Each of these events can
normally occur and does not particularly cause problems when it
occurs individually. However, if it occurs much more frequently than
normally expected, it can trigger various exceptional handling. For
instance, frequent insertions into a certain request queue can create
a state where the queue is filled, which triggers exceptional handling
such as pipeline stalls. Developers often overlook these corner cases
in exceptional handling, which can often lead to bugs.

From this observation, we propose SurgeFuzz, a fuzzing method
that intentionally triggers surges to efficiently verify corner cases
in exceptional handling. SurgeFuzz is a type of directed fuzzing,
which is based on user instructions [19], [30]–[33]. In SurgeFuzz,
the user annotates locations in the RTL code that indicate the
occurrence of an event that triggers the targeted exceptional handling.
SurgeFuzz observes the state of the annotated locations and mutates
input instruction sequences to induce a surge, that is, to increase
the temporal density of event occurrences as much as possible. For
example, when considering a surge caused by a bank conflict, the user
annotates a signal activated by the conflict, and SurgeFuzz mutates
inputs so that the temporal density at which the signal is active
increases. As a result, SurgeFuzz can efficiently generate instruction
sequences that induce surges, effectively verifying corner cases.

In summary, the main contributions of this study are as follows:
• We found that various corner cases can be verified by a surge,

which is a situation where events leading to exceptional handling
occur frequently.

• We propose a directed fuzzing method called SurgeFuzz, which
generates surge-inducing programs based on user annotation and
efficiently verifies corner cases. SurgeFuzz creates a small state
space containing only the registers associated with the annotated
signal and then explores this state space in a directed manner to
increase the temporal density of event occurrences.

• SurgeFuzz can efficiently and automatically generate test inputs
that trigger specific corner cases. This capability is useful not
only for finding logical bugs, but also for finding performance
bugs and conducting stress tests.

• We evaluated SurgeFuzz on three relatively large-scale RISC-V
out-of-order superscalar processor designs. Across 12 different
cases, the evaluation results showed that SurgeFuzz induces
surges significantly faster than existing methods. As a result, we
discovered five previously unknown bugs in these CPU designs.

• We have made our implementation and evaluation environment
available at https://github.com/shioya-lab-public/surgefuzz.

II. BACKGROUND AND MOTIVATION

This section provides the background of SurgeFuzz, focusing on
fuzzing and the motivation for this study. Other dynamic verification
techniques will be discussed in Section VI later.

A. Feedback-driven Fuzzing

Fuzz testing, also known as fuzzing, is generally a software testing
technique, and a program that performs fuzzing is called a fuzzer.
In general, fuzzing provides various inputs to a target program for
finding bugs and vulnerabilities [34]–[36].

In particular, a method known as feedback-driven fuzzing repeat-
edly generates inputs and executes a target program, using feedback
based on information gathered during execution. The information
provided as feedback is typically based on a coverage metric.
Coverage is a measure of the degree to which a target program is
tested (explored) within its state space. For example, the coverage of
executed lines or branch directions in code is generally used.

We explain the general behavior of the feedback-driven fuzzing
using Figure 1. (1) The fuzzer selects a seed for test inputs from
a seed pool. (2) The fuzzer mutates the selected seed to generate a
certain number of test inputs. (3) The fuzzer executes a target program
using the generated inputs. (4) Based on the test results, the fuzzer
decides whether to save the tested input as a new seed in the seed
pool. For example, if the coverage of executed lines is used as the
metric, an input that increases the coverage will be added to the seed
pool as a new seed.

B. Applying Fuzzing to CPU Designs

Similar to fuzzing in software testing, fuzzing in RTL designs,
including CPU designs, generates test inputs efficiently and automat-
ically. While in RTL designs the test input is typically a bit vector
for hardware input signals [17], [19], in CPU designs the test input is
typically a sequence of instructions, which are generated by random
mutation/insertion of instructions [18]. Since many aspects other than
test input generation are essentially common between CPU designs
and RTL designs, the following describes fuzzing in RTL designs.

The major difference between fuzzing in RTL designs and fuzzing
in software testing is the coverage metric used for feedback. Coverage
metrics in software (e.g., lines, branches, or statements) are not suffi-
cient for RTL designs because such metrics cannot efficiently capture
the state of hardware such as finite state machines (FSMs) [18].
Furthermore, while fuzzing in RTL designs can be implemented by
measuring the coverage in hardware to achieve fast fuzzing [17], it is

Seed Pool

1010
0000

1011
0010

1101
1000

(1) Selection (3) Execution(2) Mutation

(4) Evaluation

Target ProgramInputSeed

Fig. 1: Overview of feedback-driven fuzzing.

difficult to implement coverage metrics in lightweight hardware when
those metrics are based on information such as lines and statements.

For these reasons, various coverage metrics have been proposed
for RTL designs [17], [18]. One of the most naive coverage metrics
for capturing hardware state is the set of all register states, but this
approach can easily lead to state explosion. Thus, existing methods
propose several coverage metrics that can capture hardware states
appropriately while reducing the number of states to be explored.
For example, RFUZZ [17] uses the selection signal of a multiplexer,
which determines which input to output, as a coverage metric.
DifuzzRTL [18] uses control registers, which are registers directly
or indirectly connected to the selection signals of multiplexers. The
number of signals used for these coverage metrics is much smaller
than the number of flip-flops, and thus these existing methods can
explore the state space more efficiently than the naive method.

As an alternative approach, DirectFuzz [19] focuses its exploration
on specific parts of the state space. DirectFuzz is based on RFUZZ
and aims to maximize the coverage of a specific module instance.
It analyzes the hierarchical relationship of modules in hardware
description language (HDL) code to create a directed graph that
represents the relationships between modules. DirectFuzz intensively
verifies a target module by preferentially mutating inputs that increase
the coverage of modules close to the target module on the graph.

C. Bugs in Exceptional Handling

Existing fuzzing methods fail to sufficiently verify corner cases
that arise in various exceptional handling scenarios performed by
modern CPUs. Modern CPUs have complex structures that include
various resources such as buffers, queues, and tables, along with state
machines to manage them [37], [38]. Using such units, CPUs execute
instructions while performing various buffering, scheduling, specu-
lation, and recovery operations. These units can cause exceptional
events, including resource allocation failures due to capacity limits,
resource access conflicts, cache misses, and speculation misses. These
events trigger exceptional handling, which differs from the normal
instruction pipeline processing, such as pipeline flushes and stalls,
instruction replays, and queue insertions for waiting.

It is well known that bugs in CPUs typically occur in corner cases
of such exceptional handling [26], [28], [29]. This is because the logic
of exceptional handling is typically so complex that its corner cases
are easily overlooked and because such corner cases rarely occur in
usual program execution. Such corner cases arise from the interaction
of various modules and pipeline controls in CPUs, making it difficult
to detect them through simple unit tests [27]. As a result, bugs such
as deadlocks, livelocks, and corruption of execution results frequently
occur even in modern commercial CPUs [2]–[5].

D. Challenges in Exceptional Handling Verification

We evaluated the ability of several existing methods to verify
exceptional handling. We used a relatively large RISC-V out-of-order
superscalar processor, RSD [37], to evaluate the maximum usage of
the load queue in the processor. When the load queue reaches its
capacity limit, additional requests lead to exceptional handling, such
as stalling the pipeline. Such a load queue is known to be a bug-
prone area in CPUs [26]. Figure 2 shows the distribution based on

2

0 4 8 12 16
Maximum usage

RFUZZ
DifuzzRTL

DirectFuzz
riscv-torture
SurgeFuzz 0%

5%

10%

Fig. 2: Distribution of the maximum usage of load queue in RSD [37].
Values greater than 10% are shown in the same color. The existing
methods generate few test inputs with high queue usage.

the maximum usage of the load queue with 16 entries. The evaluation
environment is based on the ones used in Section V. As shown in
the figure, the existing methods often verify the load queue under
normal conditions with low usage and they are unable to verify the
exceptional handling that occurs when its capacity is fully utilized.

This result is due to the fact that these methods uniformly ex-
plore the entire state space of the processor design. For example,
RFUZZ/DifuzzRTL uniformly explores the state space consisting of
all selection signals/control registers in the design. Since RSD has
about 5, 000 bits of control registers, the size of its naive state space
is about 25000. Applying uniform exploration over such a large space
is unlikely to reach the corner case where the queue reaches its
maximum usage. DirectFuzz can intensively explore a specific part
of the state space, but as the evaluation results show, it is not able to
efficiently explore the corner case in the load queue. This indicates
that a corner case in a queue-like structure cannot be reached by
simply specifying a module and intensively exploring it. As a more
traditional method of verification, riscv-torture [14] uses randomly
generated inputs under certain constraints, but such a method also
fails to increase the load queue usage as well as fuzzing.

While it is possible to induce a situation where the capacity of the
load queue is fully utilized by intentionally reducing the capacity,
such a scenario does not lead to effective verification. The reason
for this is that if the configuration of some modules is significantly
changed, the behavior of other parts of the CPU may change, and
the corner cases to be verified may no longer occur. For example, if
the size of a specific queue is drastically reduced, it can become a
bottleneck, leading to a significant slowdown of the entire CPU. As
a result, bugs such as those that arise when frequent replays occur
when the entire queue capacity is used cannot be effectively verified.

Developers often recognize that bugs tend to occur in corner
cases during exceptional handling, and it is common for them to
manually create test inputs to verify these specific situations [21],
[27]. However, generating instruction sequences that cause such
corner cases is generally challenging and requires deep knowledge
of microarchitecture and considerable skill.

III. SURGE-AWARE FUZZING FOR CPU DESIGNS

A. Key Idea

We have discovered that many exceptional handling cases in CPUs
can be induced by situations we refer to as a surge. A surge refers
to a situation where events leading to exceptional handling occur
more frequently in a short time than usually expected. For instance,
frequent insertions into a request queue can create a state where
the queue becomes full, triggering exceptional handling such as
pipeline stalls. We consider events such as element insertions into
queues or buffers, access conflicts with banks/buses/shared resources,
and the occurrence of speculative misses. By intentionally causing
these events frequently, we can trigger various types of exceptional
handling.

Listing 1: Example of an annotation.
1 reg [2:0] in;
2 reg t, c1, c2;
3 reg [3:0] cnt;
4 (* SURGE_FREQ=1 *) wire increment;
5

6 always (@posedge clock) begin
7 t <= in[0] & in[1];
8 if (in[0] == 1) c1 <= in[2];
9 if (in[1] == 1) c2 <= in[2];

10 if (increment == 1) cnt <= cnt + 1;
11 end
12 assign increment = t & in[2];

annotated signal ancestor register

m
ux c1

m
ux c2

in[0]

in[1]
and

add m
ux

in[2]

t and

cnt

increment

1

Fig. 3: Circuit synthesized from the code in Listing 1. The red signal
represents an annotated signal, and the blue registers are the ancestor
registers of that annotated signal.

Based on this insight, we propose SurgeFuzz, a directed fuzzing
method that intentionally triggers surges to efficiently verify corner
cases in exceptional handling. In SurgeFuzz, users annotate signals in
RTL code that indicate the occurrence of events leading to targeted
exceptional handling. 1) To limit the space to be explored, SurgeFuzz
sets up a small partial state space consisting only of registers related
to the annotated signals. 2) Then, when exploring this small state
space, SurgeFuzz prioritizes the exploration of areas with a higher
temporal density of event occurrences. Consequently, this allows for
the automatic generation of test inputs that trigger exceptional han-
dling more efficiently than manual or dynamic verification methods.

B. System Overview

1) The small state space to be explored consists of registers, called
ancestor registers, selected based on annotations. Users annotate
a signal in RTL code that indicates the occurrence of an event,
and we refer to the signal as an annotated signal. An ancestor
register is a register that directly or indirectly determines the value
of an annotated signal. For example, Listing 1 shows the annotated
HDL code, and Figure 3 shows the circuit synthesized from this
HDL code. The increment on line 4 is the signal annotated by (*
SURGE FREQ=1 *), indicating that the goal is to frequently set this
signal to 1. The in[0], in[1], in[2], and t are its ancestor registers. This
annotation is intended to create test inputs that execute the increment
to the cnt register at a high frequency. While these ancestor registers
are typically selected from those close to the annotated signal, the
detailed selection method is explained in Section IV.

SurgeFuzz explores the state space of ancestor registers to generate
test inputs with high coverage. The reason for observing ancestor
registers is that when the annotated signal is a 1-bit signal, it can only
take on a state of either 0 or 1, resulting in a state space consisting
only of the signal that is too small for meaningful exploration.
Thus, SurgeFuzz explores the state of the ancestor registers, which
determines the future value of the annotated signal.

The state space to be explored consists only of the states of
ancestor registers, making it significantly smaller than the entire state

3

Listing 2: Example of an instrumented code.
1 wire [3:0] coverage;
2 assign coverage = {in[0], in[1], in[2], t};

space of CPUs used in existing methods. For example, in Figure 3,
registers c1 and c2 are not ancestor registers, and thus their states are
not explored. SurgeFuzz improves the efficiency of the verification
by excluding the exploration of the state of registers that are not
related to the annotated signal. These unrelated registers are typically
abundant in CPUs.

2) SurgeFuzz directionally explores this small state space to
achieve objectives given by annotations, such as reaching states
where the signal is frequently active (Section III-E). This directed
exploration is realized in the seed selection phase (1) of the feedback-
driven fuzzing, as shown in Figure 1, by preferentially selecting seeds
that yield a higher frequency of the event indicated by the annotation.

C. Annotations

This section describes the details of three annotations in SurgeFuzz.

1) SURGE FREQ=P instructs, as mentioned in the previous
example, a 1-bit signal to be activated (P=1) or deactivated
(P=0) at a high frequency within a short period. For example,
by annotating a signal that becomes active on branch mispredic-
tions, it is possible to generate programs that frequently induce
branch mispredictions.

2) SURGE CONSEC=P instructs that the duration when a 1-bit
signal is continuously active (P=1) or inactive (P=0) should be
extended. This annotation is used in scenarios where a specific
event not only occurs at a high frequency but also continues
for a certain period. For example, in Listing 5 presented in the
later evaluation, we generate programs that prevent the commit
of a store instruction for a long period by annotating a signal
that indicates a blockage of the commits in the CPU.

3) SURGE COUNT=P instructs to increase (P=MAX) or de-
crease (P=MIN) the value of a certain signal. Unlike the two
annotations above, SURGE COUNT is used when instructing
a part that indirectly indicates the frequent occurrence of events.
For example, if the number of elements in a queue is explicitly
stored in a register, such a register can be annotated. This
generates a program that frequently inserts elements into the
queue and utilizes as much of its capacity as possible.

D. Coverage Metric using Ancestor Registers

SurgeFuzz primarily uses the contents of the ancestor registers,
concatenated as a bit sequence, as a coverage metric. For example,
as shown in Listing 2, a signal to measure coverage is automatically
inserted into the HDL code, enabling the fuzzer to observe it. In this
example, the selected ancestor registers in[0], in[1], in[2], and t are
concatenated and used. The ancestor registers are basically chosen
from those close to the annotated signal, with the selection method
detailed later in Section IV.

SurgeFuzz measures this bit sequence every cycle to explore the
state space of target designs. In accordance with the feedback-driven
fuzzing framework (Section II-A), inputs that enhance the coverage
of this bit sequence, i.e., triggering new states, are added to the seed
pool as new seeds. By focusing solely on the state of the ancestor
registers that determine the state of the annotated signal, SurgeFuzz
can perform more efficient exploration compared to existing methods
that explore the state of registers in the entire CPU design.

E. Directed Exploration using Temporal Density

We employ power scheduling [39], [40] to accomplish directed
exploration. Power scheduling introduces energy E to each seed in
the feedback-driven fuzzing described in Section II-A. This energy
determines the probability of the seed being selected from the seed
pool. Seeds with higher energy yield more test inputs, thereby facil-
itating directed exploration. In SurgeFuzz, higher energy is assigned
to inputs that more effectively achieve the objective specified by the
annotation. For example, in Listing 1, higher energy is assigned to
test inputs where the signal increment is set to one more frequently.

We define a power scheduling function that assigns energy to a
seed input as follows:

p(T) = score(T)2 (1)

where T = t1, t2, · · · tN represents the series of values held by the
annotated signal in each cycle of the N -cycle simulation using the
seed input, and ti denotes the value at the i-th cycle. The function
score(T) calculates the score for power scheduling from the series
of values held by the annotated signal, and is defined as follows
according to the type of annotation1:

score(T) =

maxN−M+1

i=1

∑i+M−1
j=i tj (FREQ)

maxN
i=1 ci (CONSEC)

maxN
i=1 ti (COUNT)

(2)

where M in FREQ indicates the number of cycles in the window
measuring the frequency. Therefore, in FREQ, the frequency is
measured every M cycles, and the highest frequency throughout the
simulation is used as the score. ci in CONSEC is an auxiliary variable
that represents the number of cycles where the signal continuously
takes the value 1 up to the i-th cycle, and is computed as follows:

ci =

{
ci−1 + 1 if ti = 1

0 otherwise
(3)

where c0 = 0.
The function score(T) yields a larger value when a more intense

surge is occurring, thereby also increasing the value of the energy
function p(T). As a result, seed inputs with higher energy are
preferentially used in the exploration. In this paper, we increase
energy in a quadratic manner, aiming to allocate more energy to
crucial inputs compared to a linear manner.

IV. DETAILS OF THE ANCESTOR REGISTER SELECTION METHOD

In the following, we describe a simple method of selecting ancestor
registers based on the distance from an annotated signal, and then
describe an optimized method based on mutual information.

A. Distance-based Selection

A distance-based algorithm selects a specified number of ancestor
registers in order of distance from an annotated signal. Here, the
number of registers between a signal and another register connected
through combinational logic is defined as the register distance, which
is used as a criterion for selection. For example, in Figure 3, the
distance between increment and t is zero, the register distance
between t and in[0] is one (including itself when the register is the
starting point), and the register distance between cnt and in[0] is two.

Suppose we annotate increment using SURGE FREQ and select
three bits for the ancestor registers in total. Initially, the two bits, t and

1These formulas assume the case of P=1 or P=MAX. For the cases of P=0
or P=MIN, the formulas should be appropriately inverted.

4

in[2], which are closest to increment, are selected. Then, both in[0]
and in[1] are connected to increment through one register, thus they
have the same distance of one. In such situations, one of the registers
of the same distance is selected randomly. That is, in addition to t
and in[2], either in[0] or in[1] is selected as the ancestor registers.

This distance-based algorithm is implemented by analyzing a
directed graph that represents the circuit structure synthesized from
the HDL code. In this directed graph, each node corresponds to
a register, and the edges represent connections from each register
to another upstream register through combinational circuits. For
instance, in the case of Figure 3, there are two edges from the node
t to the nodes in[0] and in[1]. A breadth-first search is performed on
this graph, starting from the annotated signal, to select the ancestor
registers in order of their proximity.

B. Mutual Information-based Pruning

As mentioned above, the distance-based algorithm selects the
nearest ancestor registers from an annotated signal. However, the
method of simply selecting the closest ones may result in selecting
redundant ancestor registers whose contents change synchronously.

A typical example of such redundant registers is pipeline registers,
which are inserted to increase operating frequency. Especially in short
paths, pipeline registers may be inserted that are directly connected
without any combinational circuits. Such registers are synchronous
in content and their measurement is redundant. A more complex
example is t, in[0] and in[1] in Figure 3. t is strongly correlated to the
values of in[0] and in[1] because the results of the AND operations on
in[0] and in[1] are connected. Thus, in[0], in[1], and t are redundant
in terms of coverage measurement. Since the total number of bits in
the ancestor registers greatly affects the storage capacity required for
the fuzzer2, such redundant registers should be eliminated as much
as possible.

We propose a method to improve the efficiency of fuzzing by
removing redundant registers in ancestor registers based on mutual
information. Mutual information in information theory is a measure of
the interdependence of two random variables. Mutual information can
be regarded as the amount of information that one random variable
contains about another random variable. Using this notion of mutual
information, we measure the amount of information that a register
contains about other registers. If the amount of mutual information
is large, then those registers are redundant and one of them can be
removed without reducing the quality of the coverage metrics. This
allows more states to be represented per the same number of registers.

1) Mutual Information between Registers: In the following, we
show how to compute the normalized mutual information between
two arbitrary bit-width registers x and y. We simulate a target RTL
design for N cycles with some input and sample the values of the
two registers in each cycle. Let X be the set of values observed in
register x, and Y be the set of values observed in register y. In this
case, the normalized mutual information is given by:

I(x, y,X ,Y) = H(x,X)−H(x|y,X ,Y) (4)

where H(x,X) is the entropy of register x and H(x|y,X ,Y) is
the conditional entropy of register x given register y. H(x,X) and
H(x|y,X ,Y) are given by:

H(x,X) = −
∑
xi∈X

C(xi)

N
log

C(xi)

N
(5)

2If a total of N bits of ancestor registers are used as coverage indicators,
O(2N) bits of capacity are needed in the fuzzer to record the possible states.

Algorithm 1: Selection of Ancestor Registers using MI
Input: register graph generated from HDL code G, root node

representing annotated signal Rs, total number of bits
of ancestor registers to be selected Ta, NMI threshold
for selection of ancestor registers Tn, sampling data D

Output: set of all selected ancestor registers A
1 A← ∅;
2 queue← {Rs};
3 visited← {Rs};
4 while queue ̸= ∅ do
5 u← Pop(queue);
6 foreach v ∈ GetParents(G, u) do
7 if v ∈ visited then
8 continue
9 if IsValuable(A, D, r) then

10 A← A ∪ {r};
11 if GetBitSize(A) ≥ Ta then
12 return A;
13 Push(queue, v);
14 return A;
15

16 Function IsValuable (A,D, r):
17 foreach a ∈ A do
18 if NMI(a, r, D[a], D[r]) ≥ Tn then // NMI=Eq.7

19 return false;
20 return true;

H(x|y,X ,Y) = −
∑

xi∈X ,yj∈Y

C(xi)

N

C(yj |xi)

C(xi)
log

C(yj |xi)

C(xi)
(6)

where C(xi) is the amount of value xi observed in register x, and
C(yj |xi) is the amount of value yj observed in register y when value
xi is observed in register x. Since the maximum mutual information
depends on the bit widths of x and y, we use the normalized one
given by:

NMI(x, y,X ,Y) = 2× I(x, y,X ,Y)
H(x,X) +H(y,Y) (7)

where H(y,Y) is the entropy of register y, which is obtained
similarly to H(x,X).

2) Ancestor Register Selection using Mutual Information: Algo-
rithm 1 presents the process for selecting ancestor registers using the
previously mentioned normalized mutual information. Similarly to
the distance-based method, this algorithm performs a breadth-first
search on a graph representing the register connectivity. That is,
it selects ancestor registers through a breadth-first search using the
annotated signal as the starting point (lines 4-13). The difference from
the distance-based algorithm is that when a new candidate register
is found, a decision is made whether to add it to the list of already
selected registers based on the amount of mutual information (line 9).
At this time, the normalized mutual information is calculated between
the registers already selected as ancestors and candidates (lines 16-
20). If one or more of the obtained normalized mutual information
values are larger than a given threshold, the candidate register is not
inserted into the selected list. This improves coverage metrics by
selecting more valuable registers and removing redundant ones.

V. EVALUATION

A. Evaluation Setup

We evaluated SurgeFuzz and the existing state-of-the-art fuzzers
for RTL designs: RFUZZ [17], DifuzzRTL [18], and DirectFuzz [19].

5

In our evaluation, the same parameters were basically used except
for coverage metrics and power scheduling. The basic fuzzing al-
gorithms, such as input generation and seed selection, were im-
plemented based on those of DifuzzRTL and are common to all
evaluated fuzzers. For the DirectFuzz evaluation, we selected the
modules annotated in the SurgeFuzz evaluation as target modules. We
also evaluated riscv-torture [14], a random generator widely used to
verify various RISC-V CPU designs, to compare traditional dynamic
verification techniques with SurgeFuzz.

We evaluated these methods on a machine with two AMD EPYC
7713 64-core processors and 1TB of memory. We implemented 1)
automatic ancestor register identification (Section III) by analyzing
the dependency graph generated from RTL code, and 2) code in-
strumentation for coverage recording on Yosys [41] version 0.21.
We also used Verilator [42] version 4.216, a simulation environment
supporting SystemVerilog, to simulate the RTL code.

We used RSD [37], NaxRiscv [43], and Boom [38], which are
RISC-V out-of-order superscalar processors, for our evaluation. These
CPUs are relatively large and complex and are capable of dynami-
cally scheduling many instructions, including memory accesses, and
executing them out-of-order.

B. Evaluated Cases

To evaluate the effect of introducing SurgeFuzz, we created twelve
different cases for adding annotations to the CPU designs, as listed
in Table I. We searched through the targeted designs using keywords
such as “conflict” and “busy” to identify logic associated with surges
and added annotations to them.

In cases A1 through A4, we added the SURGE FREQ anno-
tations to signals that become active when an event that leads to
exceptional handling occurs to generate surges. In A1, we annotated
a signal that becomes active when an exception occurs in RSD, as
shown in Listing 3. In A2, we annotated a signal that becomes active
when a branch prediction miss occurs in NaxRiscv, as shown in
Listing 4. In A3, we annotated a signal that becomes active when
a way conflict in a data cache occurs in NaxRiscv, and in A4, we
annotated a signal that becomes active when a load queue becomes
full in BOOM.

In cases A5 through A7, we added the SURGE CONSEC
annotation to signals that become active when certain events are being
blocked, with the goal of increasing the number of cycles in which
the events are continuously blocked. In A5, we added the annotation
to a signal indicating that the issue of instructions is blocked. In A6,
we added the annotation to a signal indicating that there is no space
in the miss status handling register (MSHR), which is responsible for
managing missed accesses to caches. In A7, as shown in Listing 5,
we newly defined the sc blocked signal to indicate that the commit
of a store instruction is blocked, and we added the annotation to the
signal. As demonstrated in this example, if there is no signal that
represents a desired case, we can define a new signal and annotate it
to verify various cases.

In cases A8 through A12, we added the SURGE COUNT an-
notations to registers that manage the usage of a queue, with the
goal of increasing the usage of the queue. Specifically, we added
annotations to registers in the load queue (LQ), store queue (SQ),
and replay queue (RQ) in RSD and in the LQ and SQ in NaxRiscv.
The LQ/SQ are units for scheduling speculative accesses to memory
on these processors, and the RQ is a unit that manages instructions
replayed in the event of a speculation miss. The number of entries in
the LQ and SQ is 16, and the number of entries in the replay queue

TABLE I: Summary of evaluated cases.
ID Type CPU Brief description

A1 FREQ RSD Frequent exceptions.
A2 FREQ NaxRiscv Frequent branch prediction misses.
A3 FREQ NaxRiscv Frequent DataCache way conflict.
A4 FREQ BOOM Frequently fill the load queue.
A5 CONSEC RSD Stall the scheduler longer.
A6 CONSEC RSD Keep MSHR busy longer.
A7 CONSEC BOOM Block store commits longer.
A8 COUNT RSD High load queue usage.
A9 COUNT RSD High store queue usage.

A10 COUNT RSD High replay queue usage.
A11 COUNT NaxRiscv High load queue usage.
A12 COUNT NaxRiscv High store queue usage.

Listing 3: Annotated code snippet for case A1.
1 (* SURGE_FREQ=1 *) wire exceptionDetected;

Listing 4: Annotated code snippet for scenario A2.
1 branchMissEvent := RegNext(reschedule.valid &&

reschedule.reason === ScheduleReason.BRANCH)
init(False) addAttribute("SURGE_FREQ=1")

Listing 5: Annotated code snippet for case A7.
1 val sc_blocked = can_fire_store_commit &

!will_fire_store_commit
2 annotate(new ChiselAnnotation{
3 override def toFirrtl = AttributeAnnotation(
4 sc_blocked.toTarget, "SURGE_CONSEC=1")
5 })

Listing 6: Annotated code snippet for case A8.
1 (* SURGE_COUNT="MAX" *) [4:0] reg curCount;

is 20. For example, in A8, we annotated curCount, a register that
manages the current usage of the LQ, as shown in Listing 6.

C. Efficiency of Surge Generation

We initially evaluated the impact of surge generation for the
evaluated cases shown in Table I. We ran 30 instances for each
method to take into account the random nature of fuzzing and
evaluated the average of those results. Since the simulation time varies
with each CPU design, the evaluation duration varies from 1 hour, 4
hours, or 24 hours depending on the CPU design used in each case.

Figure 4 shows the transition of the score defined by Equation 2
over the execution time. It demonstrates that SurgeFuzz can generate
surge-inducing programs more effectively than the existing methods.
In most cases, SurgeFuzz exhibited a rapid increase in its score
within the first few tens of minutes, consistently maintaining a
significantly higher level than that of the existing methods until the
end. In contrast, the existing methods showed slower score growth,
with some cases reaching a saturation point in their growth early on.
In particular, the score of riscv-torture changed very little throughout
the execution time, because it can only generate inputs according to
pre-defined constraints.

Next, we evaluated the effectiveness of the following two methods
used by SurgeFuzz: (a) the register selection method based on mutual
information described in Section IV-B and (b) the power scheduling
strategy described in Section III-E. (1) SurgeFuzz w/o mi represents
a model that disables the mutual information-based pruning and
employs the naive distance-based selection method explained in
Section IV-A. (2) SurgeFuzz w/o ps represents a model that disables
the power scheduling strategy.

Since the trends in these evaluation results did not vary signif-
icantly across all the cases A1-A12, we only show the results for

6

0 1 2 3 4
Time (hours)

0

5

10

15
Sc

or
e

A1: RSD (Exception)

0.00 0.25 0.50 0.75 1.00
Time (hours)

0

8

16

24

Sc
or

e

A2: NaxRiscv (Branch)

0 1 2 3 4
Time (hours)

0

8

16

24

Sc
or

e

A3: NaxRiscv (Conflict)

0 1 2 3 4
Time (hours)

0

80

160

240

Sc
or

e

A4: BOOM (LQ full)

0 1 2 3 4
Time (hours)

0

8

16

24

Sc
or

e

A5: RSD (Scheduler)

0 1 2 3 4
Time (hours)

30

60

90

120

Sc
or

e

A6: RSD (MSHR)

0 6 12 18 24
Time (hours)

0

40

80

120

Sc
or

e

A7: BOOM (SC)

0 1 2 3 4
Time (hours)

4

8

12
Sc

or
e

A8: RSD (LQ)

0 1 2 3 4
Time (hours)

4

8

12

Sc
or

e

A9: RSD (SQ)

0 6 12 18 24
Time (hours)

0

5

10

15

Sc
or

e

A10: RSD (RQ)

0.00 0.25 0.50 0.75 1.00
Time (hours)

5

10

15

Sc
or

e

A11: NaxRiscv (LQ)

0.00 0.25 0.50 0.75 1.00
Time (hours)

0

5

10

15

Sc
or

e

A12: NaxRiscv (SQ)

RFUZZ DifuzzRTL DirectFuzz riscv-torture SurgeFuzz

Fig. 4: Transition of scores indicating surge intensity. The x- and y-axes represent the elapsed time and the average of the maximum value of
the score achieved up to that point over 30 runs, respectively. The higher the line, the faster the surge-inducing programs can be generated.

0 1 2 3 4
Time (hours)

5

10

15

Sc
or

e

A1: RSD (Exception)

0 1 2 3 4
Time (hours)

25

50

75

100

Sc
or

e

A6: RSD (MSHR)

0.00 0.25 0.50 0.75 1.00
Time (hours)

0

5

10

15

Sc
or

e

A12: NaxRiscv (SQ)

DifuzzRTL
SurgeFuzz w/o mi

SurgeFuzz w/o ps
SurgeFuzz

Fig. 5: Transition of scores in the three variants of SurgeFuzz and
DifuzzRTL. This figure is interpreted in the same way as Figure 4.

several representative cases. Figure 5 shows the evaluation results
for the two variants of SurgeFuzz, as well as for SurgeFuzz and
DifuzzRTL. All these results show that SurgeFuzz performs better
than SurgeFuzz w/o mi and SurgeFuzz w/o ps. The performance
degradation is larger for SurgeFuzz w/o ps than for SurgeFuzz w/o
mi, indicating that the power scheduling contributes significantly to
performance. Despite being identical except for the coverage metrics,
SurgeFuzz w/o ps exhibits superior performance to DifuzzRTL. This
indicates that the proposed coverage metric with a small state space
works effectively.

D. Discovered Bugs

We found six bugs, listed in Table II, from RSD and Boom using
SurgeFuzz and the annotations listed in Table I. These bugs were
detected by triggering assertions intended to detect issues such as
deadlocks that were originally embedded in the target HDL code.
Among them, bugs B1 to B5 discovered by RSD were previously
unknown. RSD has been verified using tests specifically developed
for it and various public test suites for RISC-V, but such tests did
not find these bugs. These bugs were not known at the time of our
evaluation, and we created the annotation without any knowledge of
the location of these bugs.

As indicated in Table II, these bugs are very complex and can only
be detected with inputs that satisfy complex constraints. In particular,
bug B5 occurs only under a very limited condition3. It is difficult
and expensive for developers to manually create test cases for such
complex constraints. This result shows that SurgeFuzz can detect

3This bug can be triggered if an instruction, sharing the same ROB index
as its preceding instruction, is flushed during a period where instruction
scheduling is stalled. This stall is typically due to consecutive recovery
operations following the issue of a long-latency instruction, such as Load
or Multiply/Divide.

hard-to-find bugs with little effort by intentionally inducing surges
based on annotations.

E. Efficiency of Bug Detection

We evaluated how quickly and how likely the six bugs listed in
Table II can be found by SurgeFuzz compared to existing methods.
Figure 6 shows the time distribution to find these bugs. We ran each
method for 24 hours and plotted the time at which we first found
each bug. If we did not find a bug within 24 hours, we do not plot
the time. Since fuzzing results are stochastic, we ran 30 instances of
each method and plotted all the results. Note that, riscv-torture could
not find any bugs and is therefore not shown in the figure.

Figure 6 shows that SurgeFuzz can detect various bugs faster and
with higher probability than the existing methods. When comparing
the bug detection times for B1 and B5, the median detection time
for SurgeFuzz is less than that of the existing methods. These
results indicate that SurgeFuzz can quickly detect bugs B1 and B5.
Furthermore, when comparing the probability of bug detection for
bugs B2, B3, B4, and B6, SurgeFuzz is significantly higher than
existing methods. For instance, the existing methods can hardly
detect bugs B2 and B4, while SurgeFuzz can detect these bugs at
an average probability of 42% and 27%, respectively. The results for
SurgeFuzz are independent of the annotation location and show the
same tendency overall.

In addition, while the existing methods were unable to detect bug
B6 at all, SurgeFuzz was able to detect it. Specifically, SurgeFuzz
with case A7 detected this bug with a higher probability than that
with case A5. This result implies that there is a strong correlation
between the scenario in A7 and the cause of bug B6. Although case
A4 uses a very simple annotation, it was able to detect bug B6. This
result implies that it is possible to detect complex bugs using simple
annotations without deep knowledge of targeted designs.

VI. RELATED WORK

Dynamic verification methods are widely used in CPU design
verification due to their ease of application [9]–[15], [44]. For
instance, in the verification of RISC-V CPUs, there are tools such
as riscv-torture [14] and riscv-dv [15], which automatically generate
programs for test inputs. These tools randomly generate programs
based on manually created constraints, without utilizing runtime
information as typical fuzzing methods do. This makes it difficult to
generate programs with complex behavior and to adequately verify
complex designs. In addition, a technique known as coverage directed
test generation has been proposed, which uses coverage feedback

7

TABLE II: Summary of bugs detected by SurgeFuzz. The ✓in the “New Bug” column indicates that the bugs were unknown before applying
SurgeFuzz. Thus, bugs B1 to B5 were first discovered by SurgeFuzz.

ID CPU Description of bugs New Bug

B1 RSD If an exception is caused during a recovery process from a speculation miss, the exception may not be processed. ✓
B2 RSD When the ROB is full, a speculation miss in the first instruction in the ROB may cause some units to be incorrectly recovered. ✓
B3 RSD Data may be incorrectly forwarded from the store queue when a load instruction that accesses an invalid area is executed. ✓
B4 RSD If an instruction is flushed immediately after it is replayed from the replay queue, the associated resources in the MSHR

may not be released.
✓

B5 RSD If recovery processes are performed continuously, an instruction may not wake up correctly in the scheduler. ✓
B6 BOOM If wakeups of the load instruction are consecutive, a deadlock may occur in a commit of the store instruction.

10 1

100

101
Annotation: A1 / Bug: B1

10 1

100

101
Annotation: A5 / Bug: B1

10 1

101
Annotation: A8 / Bug: B1

10 1

101
Annotation: A9 / Bug: B1

10 1

100

101
Annotation: A10 / Bug: B1

0

10

20

Annotation: A1 / Bug: B2

0

10

20

Annotation: A5 / Bug: B2

0

10

20

Annotation: A8 / Bug: B2

0

10

20

Annotation: A9 / Bug: B2

0

10

20

Annotation: A10 / Bug: B2

0

10

20

Annotation: A1 / Bug: B3

0

10

20

Annotation: A5 / Bug: B3

0

10

20

Annotation: A8 / Bug: B3

0

10

20

Annotation: A9 / Bug: B3

0

10

20

Annotation: A10 / Bug: B3

10

20

Annotation: A1 / Bug: B4

10

20

Annotation: A5 / Bug: B4

10

20

Annotation: A8 / Bug: B4

10

20

Annotation: A9 / Bug: B4

10

20

Annotation: A10 / Bug: B4

100

101

Annotation: A1 / Bug: B5

100

101

Annotation: A5 / Bug: B5

100

101

Annotation: A8 / Bug: B5

100

101

Annotation: A9 / Bug: B5

100

101

Annotation: A10 / Bug: B5

5
10

Annotation: A4 / Bug: B6

5
10

Annotation: A7 / Bug: B6

Ti
m

e
to

 fi
rs

t d
et

ec
tio

n
(h

ou
rs

)

RFUZZ DifuzzRTL DirectFuzz SurgeFuzz

Fig. 6: Distribution of detection times for the six bugs shown in Table II for each method. In each plot, lower points indicate that the bug
was found faster, and more points indicate that the bug was found with a higher probability. Each row represents the results for bugs B1 to
B6 in order, and each column shows the results for different annotations. Since RFUZZ and DifuzzRTL do not use annotations, the same
data are plotted across each row. Because riscv-torture was unable to find any bugs at all, it is omitted from this figure. Since each fuzzer
executed 30 instances, up to 30 points can be plotted. For example, the plot for “Annotation: A1 / Bug: B4” represents the results for bug B4
listed in Table II when using annotation A1 as shown in Table I. In this plot, RFUZZ and SurgeFuzz have 1 or 10 points plotted respectively,
indicating a probability of detecting a bug of 1/30 and 1/3 respectively. On the other hand, DifuzzRTL and DirectFuzz do not have any
points plotted, indicating no bug detection at all.

to update the constraints of the test generator at runtime [9]–[11].
However, in most cases, this technique requires a deep understanding
of each target design [19], and thus, it cannot be easily applied.

Similar to our approach, techniques that leverage human knowl-
edge and assistance to identify hard-to-find bugs in CPU designs
have also been proposed [11], [21]. For example, StressTest [11]
generates inputs that effectively stress the points of interest using
a Markov model. While most existing fuzzing methods focus on
input generation, Logic Fuzzer [21] randomizes the internals of CPU
designs themselves. Logic Fuzzer randomizes the state or control
signal of each test target without affecting its logical functionality
and aims to explore states that are difficult to reach with normal
input. However, such techniques often require significant domain
knowledge and user effort, and thus the setup cost is expensive. On
the other hand, SurgeFuzz only requires simple annotations and can
be relatively easily applied, even without knowledge of target CPUs.

In the field of software fuzzing, there exist methods that target
hard-to-test corner cases and rare states, similar to our approach [39],
[45]–[47]. AFLFast [39] and FairFuzz [45] automatically focus on
less frequently executed paths or edges, thereby increasing the

chances of uncovering bugs that other fuzzing methods might over-
look. On the other hand, IJON [46] and FuzzFactory [47] focus more
directly on specific targets, such as corner cases and rare states, based
on human instructions. As mentioned above, these software fuzzing
methods are difficult to apply directly to CPU designs. Furthermore,
SurgeFuzz differs significantly from these methods in that it focuses
on and annotates surges, which are temporal phenomena.

VII. CONCLUSION

While significant advancements have been made in the field of
dynamic verification for CPU designs, the challenge of effectively
verifying exceptional handling remains unresolved. To tackle this
problem, we proposed a new directed fuzzing method called Surge-
Fuzz. SurgeFuzz employs annotations to induce ’surges’ - situations
where events related to exceptional handling occur at a high density
- enabling more efficient verification of potential bug-prone areas in
CPU designs. Using a relatively large and complex RISC-V CPU as
a test bench, we demonstrated that SurgeFuzz, solely with simple
annotations, can induce surges and uncover bugs more efficiently
compared to existing methods.

8

REFERENCES

[1] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. K. Kanuparthi, H. Khat-
tri, J. M. Fung, A. Sadeghi, and J. Rajendran, “Hardfails: Insights into
software-exploitable hardware bugs,” in USENIX Security Symposium
(USENIX Security), 2019, pp. 213–230.

[2] Intel, “Intel® Core™ x-series processor family - specification update.”
[3] Freescale Semiconductor, “Chip errata for the i. MX 6Dual/6Quad.”
[4] AMD, “Revision guide for AMD family 17h models 00h-0fh proces-

sors.”
[5] AMD, “Revision guide for AMD family 19h models 00h-0fh proces-

sors.”
[6] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,

S. Pandav, A. Slobodová, C. Taylor, V. A. Frolov, E. Reeber, and A. Naik,
“Replacing testing with formal verification in Intel Core i7 processor
execution engine validation,” in International Conference on Computer
Aided Verification (CAV), 2009, pp. 414–429.

[7] A. Ahmed, F. Farahmandi, and P. Mishra, “Directed test generation
using concolic testing on RTL models,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2018, pp. 1538–1543.

[8] R. Zhang, C. Deutschbein, P. Huang, and C. Sturton, “End-to-end
automated exploit generation for validating the security of processor
designs,” in IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018, pp. 815–827.

[9] S. Fine and A. Ziv, “Coverage directed test generation for functional
verification using Bayesian networks,” in ACM/IEEE Design Automation
Conference (DAC), 2003, pp. 286–291.

[10] G. Squillero, “Microgp-an evolutionary assembly program generator,”
Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp. 247–
263, 2005.

[11] I. Wagner, V. Bertacco, and T. M. Austin, “Stresstest: an automatic
approach to test generation via activity monitors,” in ACM/IEEE Design
Automation Conference (DAC), 2005, pp. 783–788.

[12] J. Wang, H. Li, T. Lv, T. Wang, X. Li, and S. Kundu, “Abstraction-
guided simulation using Markov analysis for functional verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 2, pp. 285–297, 2016.

[13] V. Herdt, D. Große, E. Jentzsch, and R. Drechsler, “Efficient cross-level
testing for processor verification: A RISC-V case-study,” in Forum on
Specification & Design Languages (FDL), 2020, pp. 1–7.

[14] “riscv-torture,” https://github.com/ucb-bar/riscv-torture.
[15] “riscv-dv,” https://github.com/chipsalliance/riscv-dv.
[16] Y. Lyu and P. Mishra, “Scalable concolic testing of RTL models,” IEEE

Transactions on Computers, vol. 70, no. 7, pp. 979–991, 2021.
[17] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:

coverage-directed fuzz testing of RTL on FPGAs,” in ACM/IEEE In-
ternational Conference on Computer-Aided Design (ICCAD), 2018, pp.
1–8.

[18] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “DifuzzRTL:
Differential fuzz testing to find CPU bugs,” in IEEE Symposium on
Security and Privacy (S&P), 2021, pp. 1286–1303.

[19] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “DirectFuzz: Automated test generation for RTL designs using
directed graybox fuzzing,” in ACM/IEEE Design Automation Conference
(DAC), 2021, pp. 529–534.

[20] S. K. Muduli, G. Takhar, and P. Subramanyan, “HyperFuzzing for
SoC security validation,” in ACM/IEEE International Conference on
Computer-Aided Design (ICCAD), 2020, pp. 1–9.

[21] N. Kabylkas, T. Thorn, S. Srinath, P. Xekalakis, and J. Renau, “Effective
processor verification with logic fuzzer enhanced co-simulation,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2021, pp. 667–678.

[22] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in USENIX Security
Symposium (USENIX Security), 2022, pp. 3237–3254.

[23] R. Kande, A. Crump, G. Persyn, P. Jauernig, A. Sadeghi, A. Tyagi, and
J. Rajendran, “TheHuzz: Instruction fuzzing of processors using golden-
reference models for finding software-exploitable vulnerabilities,” in
USENIX Security Symposium (USENIX Security), 2022, pp. 3219–3236.

[24] C. Chen, R. Kande, N. Nguyen, F. Andersen, A. Tyagi, A. Sadeghi, and
J. Rajendran, “HyPFuzz: Formal-assisted processor fuzzing,” in USENIX
Security Symposium (USENIX Security), 2023, pp. 1361–1378.

[25] J. Xu, Y. Liu, S. He, H. Lin, Y. Zhou, and C. Wang, “MorFuzz: Fuzzing
processor via runtime instruction morphing enhanced synchronizable co-
simulation,” in USENIX Security Symposium (USENIX Security), 2023,
pp. 1307–1324.

[26] K. Constantinides, O. Mutlu, and T. M. Austin, “Online design bug
detection: RTL analysis, flexible mechanisms, and evaluation,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2008, pp. 282–293.

[27] R. C. Ho, C. H. Yang, M. Horowitz, and D. L. Dill, “Architecture
validation for processors,” in ACM/IEEE International Symposium on
Computer Architecture (ISCA), 1995, pp. 404–413.

[28] B. Bailey, “When bugs escape,” 2018. [Online]. Available: https:
//semiengineering.com/when-bugs-escape

[29] H. Arbel, “Bug escapes and the definition of
done,” 2021. [Online]. Available: https://semiengineering.com/
bug-escapes-and-the-definition-of-done

[30] M. Böhme, V. Pham, M. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2017, pp. 2329–2344.

[31] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2018, pp.
2095–2108.

[32] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan: Sanitizer-
guided greybox fuzzing,” in USENIX Security Symposium (USENIX
Security), 2020, pp. 2289–2306.

[33] H. Huang, Y. Guo, Q. Shi, P. Yao, R. Wu, and C. Zhang, “BEACON:
directed grey-box fuzzing with provable path pruning,” in IEEE Sympo-
sium on Security and Privacy (S&P), 2022, pp. 36–50.

[34] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[35] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–
2331, 2021.

[36] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A survey for
roadmap,” ACM Computing Surveys, vol. 54, no. 11s, pp. 1–36, 2022.

[37] S. Mashimo, K. Inoue, R. Shioya, A. Fujita, R. Matsuo, S. Akaki,
A. Fukuda, T. Koizumi, J. Kadomoto, H. Irie, and M. Goshima, “An open
source FPGA-optimized out-of-order RISC-V soft processor,” in IEEE
International Conference on Field-Programmable Technology (FPT),
2019, pp. 63–71.

[38] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “SonicBOOM: The
3rd generation Berkeley out-of-order machine,” vol. 5, 2020.

[39] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as Markov chain,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016, pp. 1032–1043.

[40] M. Böhme, V. J. M. Manès, and S. K. Cha, “Boosting fuzzer efficiency:
an information theoretic perspective,” in ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2020, pp. 678–689.

[41] “Yosys,” https://yosyshq.net/yosys.
[42] “Verilator,” https://www.veripool.org/verilator.
[43] “NaxRiscv,” https://github.com/SpinalHDL/NaxRiscv.
[44] B. Bentley, “Validating the Intel Pentium 4 microprocessor,” in

ACM/IEEE Design Automation Conference (DAC), 2001, pp. 244–248.
[45] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for

increasing greybox fuzz testing coverage,” in ACM/IEEE International
Conference on Automated Software Engineering (ASE), 2018, pp. 475–
485.

[46] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “IJON: Exploring
deep state spaces via fuzzing,” in IEEE Symposium on Security and
Privacy (S&P), 2020, pp. 1597–1612.

[47] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar,
“FuzzFactory: Domain-specific fuzzing with waypoints,” ACM on Pro-
gramming Languages, vol. 3, no. OOPSLA, pp. 1–29, 2019.

9

