278

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.2 FEBRUARY 2013

[PAPER

Register Indirect Jump Target Forwarding

Ryota SHIOYA ", Member, Naruki KURATA'", Nonmember, Takashi TOYOSHIMA™"-"*", Member,
Masahiro GOSHIMA ", Nonmember, and Shuichi SAKAI'", Fellow

SUMMARY Object-oriented languages have recently become com-
mon, making register indirect jumps more important than ever. In object-
oriented languages, virtual functions are heavily used because they improve
programming productivity greatly. Virtual function calls usually consist
of register indirect jumps, and consequently, programs written in object-
oriented languages contain many register indirect jumps. The prediction of
the targets of register indirect jumps is more difficult than the prediction of
the direction of conditional branches. Many predictors have been proposed
for register indirect jumps, but they cannot predict the jump targets with
high accuracy or require very complex hardware. We propose a method
that resolves jump targets by forwarding execution results. Our proposal
dynamically finds the producers of register indirect jumps in virtual func-
tion calls. After the execution of the producers, the execution results are
forwarded to the processor’s front-end. The jump targets can be resolved by
the forwarded execution results without requiring prediction. Our proposal
improves the performance of programs that include unpredictable regis-
ter indirect jumps, because it does not rely on prediction but instead uses
actual execution results. Our evaluation shows that the IPC improvement
using our proposal is as high as 5.4% on average and 9.8% at maximum.
key words: processor architecture, register indirect jump, object-oriented
programming

1. Introduction

The accuracy of branch predictors is one of the most impor-
tant factors for out-of-order superscalar processors. There-
fore, branch predictors have been researched for a long time,
and new predictors have recently been proposed [1]-[3].

Much research on branch predictors has targeted condi-
tional branches, but register indirect jumps are now becom-
ing more important than ever. This shift in focus is caused
by the widespread use of object-oriented languages. In
object-oriented languages, virtual functions are heavily used
for the polymorphism feature, as described in Sect. 2.1. Vir-
tual function calls usually consist of register indirect jumps,
thus making them more important than ever.

It is generally more difficult to predict jump targets of
register indirect jumps than those of conditional branches, as
described in Sect. 3. A branch target buffer (BTB) is widely

Manuscript received June 18, 2012.
Manuscript revised September 29, 2012.

"The author is with Graduate School of Engineering, Nagoya
University, Nagoya-shi, 464-8603 Japan.

"'The authors are with Graduate School of Information Sci-
ence and Technology, The University of Tokyo, Tokyo, 113-8656
Japan.

T The author is with Google Japan Inc., Tokyo, 106-6126
Japan.
a) E-mail: shioya@nuee.nagoya-u.ac.jp
DOI: 10.1587/transinf. E96.D.278

used for this purpose and it can predict the targets of regis-
ter indirect jumps. A BTB is relatively effective when the
target addresses of register indirect jumps are fixed. How-
ever, a BTB is not effective for register indirect jumps with
variable jump targets, which often appear in programs writ-
ten by object-oriented languages. Although many predictors
have been proposed for register indirect jumps with vari-
able jump targets, they either do not predict the jump targets
with high accuracy or require very complex hardware, as
described later in Sect.8. This is because it is essentially
difficult to predict the targets of register indirect jumps in
programs written in object-oriented languages. The jump
targets are basically predicted on the basis of their histo-
ries. However, in object-oriented languages, jump targets
often vary depending not on their history but on data con-
tents (Sect. 3).

We propose register indirect jump target forwarding.
Our proposal dynamically finds the producers of register
indirect jumps in virtual function calls. After the produc-
ers are executed, the execution results are forwarded to the
processor’s front-end. The target addresses of register in-
direct jumps can be resolved by the forwarded execution
results without the need to predict them. Our proposal
improves the performance of programs written in object-
oriented languages, which include unpredictable register in-
direct jumps, because our proposal forwards the actual exe-
cution results. Furthermore, our proposal is independent of
prediction-based methods, and hence it is compatible with
them. The evaluation results in Sect.7 show an IPC im-
provement as high as 5.4%.

The rest of the paper is organized as follows. Section 2
and 3 introduce virtual function calls and their problems.
Section 4 describes the basic ideas of our proposal, fol-
lowing which Sect.5 gives its detailed design. Section 6
describes static code scheduling for our proposal. Then,
Sect. 7 presents evaluation results, and Sect. 8 explains re-
lated works.

2. Virtual Function

This section describes virtual function calls. Section 2.1 ex-
plains virtual functions in object-oriented languages, and
Sect.2.2 explains the implementation of virtual function
calls.

Copyright © 2013 The Institute of Electronics, Information and Communication Engineers

SHIOYA et al.: REGISTER INDIRECT JUMP TARGET FORWARDING

2.1 Virtual Function Call

A virtual function is a method "whose behavior can be rede-
fined in a derived class. This redefinition in a derived class
is called overriding. A virtual function overridden in a de-
rived class is called by the same procedure as that of a base
class. This feature is called polymorphism, which is one
of the most important features in object-oriented program-
ming.

Figure 1 shows an example of a virtual function call
and polymorphism. This example source code implements
a simple application that draws circles and squares. The
Drawable class is a base class of classes that actually draw
graphics. This class defines an interface of the Draw()
method that draws graphics. Both the Circle and Square
classes inherit the Drawable class and override the Draw()
method. The list stores objects of these classes and is tra-
versed to draw graphics. In the for loop, the Draw() method
is called iteratively for each object in the list. In this case,
the Circle::Draw() or Square::Draw() method is called de-
pending on the type of each object.

Polymorphism can effectively reduce program com-
plexity, because programmers can call methods without con-
sidering the data types of objects and do not need to write
explicit branches for each data type. Consequently, object-
oriented languages, which include polymorphism as a fea-
ture, are widely used and are indispensable in building large-
scale applications.

2.2 Implementation of Virtual Function

In object-oriented languages like C++, virtual functions are
typically implemented by using a data structure called a vir-
tual function table (VFT). A VFT is a table that stores point-
ers to virtual functions for each class type.

Figure 2 shows an example of a data structure including
VFTs. This figure corresponds to the first three elements of
list{N] in Fig. 1. Each object has a pointer variable vitbl. A
vibl stores a pointer to a VFT of its own class type. For
example, the objects pointed by list[1] and list[2] belong to
the same Square type, so each vtbl of the objects points to
the same VFT in the Square type. Each VFT stores function
pointers to virtual functions. In this figure, the first entry of
each VFT stores a pointer to Draw().

We explain how virtual functions are called using an
example in which Circle::Draw() is called from list[0], as
shown in Fig. 2. This example would correspond to a state-
ment “list{0]»Draw()” in C++. The steps for calling virtual
functions are as follows:

@ : A vibl in an object is read, and then the pointer to a
VFT is obtained. In Fig. 2, the vtbl in Circle Object is
referred from list[0]. Then the pointer to Circle Virtual
Function Table is obtained.

@ : A target function pointer is loaded from the VFT. In
Fig.2, the first entry of the VFT is read. Then, the
function pointer to Circle::Draw() is obtained.

279

9: // Class definitions.

1: class Drawable {

2: virtual void Draw() = ©;
XN H

4:

5: class Circle : Drawable {

6: virtual void Draw() { .. };
700}

8:

9: class Square : Drawable {
10: virtual void Draw() { .. };

11: };

13: // Virtual function call.
14: Drawable* 1list[N];

16: for(1 =0; i < N; i++){
17: list[i]->Draw();
18: }

Fig.1 Virtual function call with heterogeneous list.

Drawable* Circle Virtual
list[N] Circle Object ~ Function Table Function Code
[0] e @ vtbl & @ Draw .—6 void Circle::Draw()
[1] ¢ radius Print {
PR }
\ Square Virtual

quare Object-0 Function Tabl

le
f void Square::Draw()

vtbl & Draw &
width Print {
}
uare Object-1
vibl &
width

Fig.2 Data structure of virtual function table.

0: load r2 <= (ri+e)
load r3 <= (r2+e)
2: jsr (r3)

// Load vtbl from an object
// Load Draw() addr. from vtbl
// Call Draw

[y

Fig.3 Machine code of virtual function call.

® : A target function is called with the pointer obtained in
the previous step. In Fig. 2, Circle::Draw() is called.

Virtual functions having the same name are called in
the same manner among the base and derived classes. This
is because the positions of vtbls in objects and layouts of
VFTs are common among the base and derived classes. In
Fig. 2, both the Circle and Square objects have a vtbl at the
first position. Each pointer of the Circle and Square classes
to a corresponding Draw() is stored at the same position in
their VFTs. Therefore, Circle::Draw() and Square::Draw()
are called from list[N] in the same manner.

A virtual function call is usually compiled to two
load instructions and one register indirect jump instruc-
tion. These three instructions respectively correspond to
the above three steps for calling virtual functions. Fig-
ure 3 shows a machine code for calling the Draw() functions
shown in Fig. 1. The first load loads vtbl from register r1,
which stores a pointer to an object, and obtains a pointer to

In object-oriented programming, a function associated with a
class is called a method.

280

a VFT. The second load loads an entry in the VFT from the
obtained pointer. Then, the address to a function Draw() is
obtained. The jsr, which is a register indirect jump instruc-
tion, jumps to the obtained address.

3. Problems of Virtual Function Call

Virtual function calls have the following two problems:

1. Difficulty in branch prediction of register indirect
jumps.

2. No latency-hiding capability for register indirect jumps
by out-of-order superscalar processors.

This section explains these problems.
3.1 Difficulty in Prediction

It is generally more difficult to predict target addresses of
register indirect jumps than the directions of conditional
branches. This is because of the following reasons:

1. Register indirect jumps require to predict target address
values. This is in contrast to conditional branches,
which require to predict a direction as either taken or
untaken.

2. In conditional branches, prediction based on control
flow histories are usually highly accurate. In contrast,
history-based methods cannot predict the target ad-
dresses of register indirect jumps for virtual functions
with high accuracy. This is because the jump targets
are often changed on the basis of the data content. For
example, in the heterogeneous list in Fig. 1, jump tar-
gets are changed on the basis of the contents of list[N].
Thus, the jump targets cannot be predicted from control
flow histories.

A return instruction is a type of register indirect jumps.
A predictor that is based on refurn address stack (RAS) can
predict the target addresses of return instructions with high
accuracy [4]-[6]. There has been much research on the other
types of register indirect jumps, which will be described in
Sect. 8. However, it is generally difficult to predict the jump
targets, as described before.

3.2 No Latency-Hiding Capability

It is well known that out-of-order superscalar processors can
hide the latency of instructions through dynamic schedul-
ing. However, such dynamic scheduling cannot hide the
latency of instructions in virtual function calls. This sec-
tion describes this problem by comparing a case of normal
instructions with that of virtual function calls.

(1) Normal Instructions

Processor performance is not directly affected by the latency
of load instructions that access a level-1 data cache. This
is because out-of-order superscalar processors can hide the
latency of those instructions through dynamic scheduling.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.2 FEBRUARY 2013

0 1 2 3 4 5 6 7
Ly—LIE] [SCI[L1] cycle
La—LIE] [T | I [

L LE] CSCIC I SHEX]

[IFEJ[RNIJ[SCI[EX]

Fig.4 Latency hiding of normal instructions.

Table1 Label definition in pipeline charts.

Label | Definition

IF Instruction Fetch
RN Renaming

SC Scheduling

EX Execution
L1 L1 Cache Access
0 1
Ildo_mmmm L1 cycle

Iy—LIE] g-
-:I:l {EX]
[, — [IF[RNJ[SCILEX]

I, ——[IF | [RN]CSCILEX]

I, —t——LIF J[RNJ[SCLEX]

I, ——+——[IF |[RNJ[SC][EX]

f; ———+——[IF |[RNJ[SCJ[EX

Is i [IF J[RNJ[SCJ[EX]
1, LS [IFI[RNI[SCI[|
L [CIF_I[RN[SC]
Iy [IF I[RN[SC
I LIF_I(RN
Ly CIF_I(RN]
I, [IF]
I O]

miss penalty

Fig.5 Branch misprediction in virtual function call.

Figure 4 shows the behavior of a processor pipeline that
hides the latency of load instructions. The processor in this
figure is a two-issue out-of-order superscalar processor. Ta-
ble 1 summarizes the labels in this figure. In this figure, 1,44
is an add instruction, and I;;0 and I;;; are load instructions.
1,44 1s dependent on I, while I;;; is dependent on [j40. Iy
~ I, are independent of 1,44, 1140, OT I141.

The execution of /.4, is delayed while waiting for the
execution of [;;; and I;50. Through dynamic scheduling, the
processor can execute Iy ~ I in cycle 4 ~ 6. This scheduling
hides the latency of I;;; and ;4.

(2) Virtual Function

In contrast to the case of normal instructions, processor per-
formance is decreased directly by the latency of instructions
in virtual function calls. This is because dynamic schedul-
ing by out-of-order superscalar processors cannot hide the
latency of such instructions.

Figure 5 shows the behavior of a processor pipeline

SHIOYA et al.: REGISTER INDIRECT JUMP TARGET FORWARDING

when a branch misprediction occurs on a virtual function
call. In this figure, I}, is a register indirect jump. I}, is
dependent on [;;;, while I;; is dependent on ;5. These
instructions correspond to instructions generated from a vir-
tual function call, as described in Sect. 2.2. Iy ~ I, are inde-
pendent of /., Ijqo or I;g;. The other labels are the same as
the ones in Fig. 4. Branch misprediction penalty generally
corresponds to the latency from a fetch stage to an execution
stage of a branch instruction. In Fig. 5, the latency from the
fetch of I}, to its execution is prolonged by /;;1 and ;4.

In the case of normal instructions, out-of-order super-
scalar processors hide the latency of load instructions by
executing independent successors. However, as shown in
Fig.5, all the successors of [, are flushed on branch mis-
prediction. Thus, the processor cannot hide the latency.

4. Register Indirect Jump Target Forwarding

We propose register indirect jump target forwarding. Our
proposed scheme dynamically finds the producer instruc-
tions of register indirect jumps in virtual function calls. Af-
ter a producer is executed, the execution result is forwarded
to the processor’s front-end. The next address of the con-
sumer register indirect jump can be resolved by the for-
warded execution results, without the use of prediction. Our
proposal consists of static code scheduling of virtual func-
tion calls and a forwarding mechanism, which are explained
in Sects. 4.1 and 4.2, respectively.

4.1 Static Code Scheduling

Static code scheduling generally reduces branch mispredic-
tion penalties of virtual function calls. Figure 6 shows the
behavior of a processor pipeline that is executing statically
scheduled instructions. Note that the instruction stream in
Fig. 6 is a statically scheduled version of that in Fig.5. In
this stream, I}, is statically scheduled to separate from /4,
which is the producer of /.. This static scheduling makes
it possible for a processor to detect a branch misprediction
at the earliest after the fetch of /. This is in contrast to the
case in Fig. 5.

o 1 2 3 4
T—IE] [RNJ[SC[IT] L1
Tay—IEJ[RNJ[SC]]
Iy —

I CIE]
Iy [IF] [sc]
I, Tush CIF]
Ly [IF]
I, [IF]
I O]

miss penalty

Fig.6 Pipeline of virtual function call (optimized code).

281

However, the static scheduling does not improve per-
formance anymore than the case in Fig. 6 in terms of the fact
that [, is separated further away from its producer. We ex-
plain this behavior using Fig.7. The instructions in Fig.7
are statically scheduled in the same way as in Fig.6. In
this figure, the processor detects the branch misprediction
at the earliest after the fetch of I, in the same way as in
Fig. 6. The execution of I}y is already finished at the fetch
of I, but I, cannot know the result of its producer. Con-
sequently, the branch misprediction penalty is not reduced
than that in Fig. 6.

4.2 Target Forwarding

We propose a method that forwards the execution result of
a producer to the processor front-end. This method resolves
indirect jump targets by the forwarded results on instruction
fetch, without needing conventional branch prediction. In
Fig.7, the execution of /;4;, which is the producer of [y, is
finished at the fetch of /. In this case, our proposal for-
wards the result of the producer to the processor front-end.
Figure 8 shows the behavior of this forwarding for the same
instruction stream in Fig. 7. In Fig.8, I, receives the for-
warded execution result from [;;;. This makes it possible
for the processor front-end to resolve the jump target of I,
and fetch successive instructions, without requiring any pre-
diction. Consequently, no branch misprediction occurs and
our proposal removes the misprediction penalty itself in this
case.

4.2.1 Early Recovery Mechanism
If static scheduling does not separate a register indirect jump

and its producer sufficiently, our proposed method will not
be able to forward the execution result of the producer. This

0, 1 2 .3 4 5 6 7 .8 9 10

Ly—IE] cycle

I/dl_E: { L1]

I

I LI J[RNJ[SCI[EX]

I, —[IF I[RNI[SCI[EX]

I; —[IF I[RNI[SCI[EX]

Ly — [RN[SC[EX]

I; ——[F 1[RN][SCI[EX]

Is [IF_][RNJ[SCI[EX]

I; [IF_JCRNJ[SCI[EX]

I LIF_|(RN]

Iy [IF J[RNI[SC]

Iy

]11

112

L, [IE_J[RNJ[SC |[EX]

11 CIEI[RNI[SC]

1y LIF I[RN][SC]

I Alush [IF_I[RN|

Lig “ CIF (RN

17 LIF]

Ls LE]
miss penalty

Fig.7 Pipeline of virtual function call (optimized code, no forwarding).

282
0 1 2 3 4 5 6 7 8 9 10

Ly—IE] cycle
I,—LIF][RN] LIS I%‘
1y
I ,
I, ———[FJ[RNJ[SCI[EX] |/forwarding
I, ——[IFJ[RNJ[SCIEX]
y—
[——————————
Iy [IF JRNJ[SC[EX]
I [IF JRNJ[SCI[EX]
I CIF JCRNJ[SCEXT
Iy CIF JCRNJJSCIET
Iy CIF J (RN [SCIEX]
Iy CIFJ(|RNICSCEXT
I [JIEJ[RNI[SCIEX]
L [MF I (RNJ[SCI[EX]
I LIF J[RNJ[SC]
Iy LIF_J[RNJ[SC]
fis LIF J[RN]
L1 (IF J[RN
[17 E
Ipg LIE]

Fig.8 Pipeline of virtual function call (optimized code, forwarding).

o .1 2 3 4 5 6 .7 8
Ly—IE] [SCI[LTI[LT] cycle
Ildli

I, ———

I _—'

I, —[F J[RNJ[SCIEX] early recovery
I; —[IE I[RN][SCIEX]

I, —LIE][RNJ[SCI[EX]

I; ———[IF][RN]J[SCI[EX]

Is LIE J[RNI[SCI[EX]

I; LIF_JCRNJ[SCJ[EX]

Is [IF_I[RNI|SCI[EX]

- LIE J[RNJ SCICEX]

L }‘lush[EI

110 <I—>E|

L miss penalfy_IE

Iy LIF I[RN]

Fig.9 Early recovery.

is because the execution of the producer occurs too late for
the fetch of the register indirect jump.

We propose an early recovery method for such a case.
Figure 9 shows the behavior of a processor pipeline with our
early recovery method. In this figure, the finish of I;;; oc-
curs too late for the fetch of /., which is the consumer of
Iig1. This is because [, is not sufficiently distant from its
producer I;;; statically. Therefore, the successive instruc-
tions of I, are fetched using branch prediction, as in con-
ventional processors. After the execution of the producer,
if its result is different from the predicted target of Iy, the
processor detects branch misprediction. This makes it pos-
sible for the processor to recover from branch mispredic-
tion without waiting for the execution of /;;.. As shown in
Fig. 9, our proposal cannot remove the branch misprediction
penalty completely, but the penalty is reduced considerably
when compared to that in Fig. 5.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.2 FEBRUARY 2013

execution result (jump target)
Producer (load)
pc 1
Dst. Op.
producer address
|
Producer
Table (PT)
Sre. Op,| — 1
producer address i
C Jump target
Consumer (I-Jump) P l Target
Forwarding
Buffer (TFB)
consumer address
L=
Consumer
Table (CT) Consumer Jump

Target

Fig.10 Block diagram.

5. Implementation

This section describes the implementation and behavior of
our proposal. Figure 10 is a block diagram of our system.
Our proposal mainly consists of three tables. These tables
make it possible for the processor to forward the execution
results of producers to consumer register indirect jumps.

5.1 Tables

Our proposal uses the following three tables:

1. Producer Table (PT)
A PT gives mapping from register numbers to the last
instructions that update corresponding the register en-
tries. Specifically, the PT is indexed by a logical regis-
ter number and returns an instruction address. A con-
sumer instruction looks up the address of its producer
from the PT by using the source operands of the con-
sumer.

2. Consumer Table (CT)
A CT gives mapping from producer instructions to con-
sumer instructions. Specifically, the CT is indexed by
the instruction address of a producer and returns that of
a consumer.

3. Target Forwarding Bufter (TFB)
A TFB stores forwarded jump targets. The TFB is
indexed by the instruction address of a consumer. It
returns a forwarded jump target corresponding to the
consumer.

The rest of this section describes the behavior of our
proposal according to these three tables.

5.2 Training Tables for Forwarding

First, the processor creates links from producers to con-
sumers. These links make it possible for producers to find
their consumers on forwarding their execution results. This
link mechanism is implemented by the PT and CT. Fig-
ure 11 shows an example of these links. The figure shows
a producer instruction I, (load) at address 0010. Similarly,

SHIOYA et al.: REGISTER INDIRECT JUMP TARGET FORWARDING

0010: 7, load 1 <=(r2) PC: 0010
Dst: 1 L @ |
0010
Producer
() \Ltable 1)
Src:
0010 .
: : arget
EEENEN PC: 0020 @ Forwarding
Buffer (TFB)
0020
Consumer
Table (CT)

Fig.11 Linking producer and consumer.

the figure shows the consumer instruction /. (jsr) at address
0020. They are linked in the following manner:

@ : After a producer is decoded, it writes its instruction ad-
dress to an entry in the PT corresponding to its destina-
tion operand. In Fig. 11, I, writes its address (0010) to
the entry corresponding to its destination operand (r1).

@ : After a consumer is decoded, it looks up an entry in the
PT corresponding to its source operand. In Fig. 11, I,
looks up the entry corresponding to its source operand
r1, and the PT returns 0010, which is the address of 1,,.
This is because I, is the last instruction that updates r1.

® : The consumer writes its instruction address to an en-
try in the CT corresponding to the producer address
obtained in the phase Q. In Fig. 11, the address of I,
(0020) is written to the entry in the CT corresponding
to the address of 1, (0010).

5.3 Forwarding Indirect Jump Target

Link information prepared by the PT and CT is used for
forwarding jump targets. The execution result of a producer,
which is the jump target of a consumer, is forwarded to the
consumer. We explain the behavior of this forwarding using
Figs. 12 and 13. The labels in these figures are the same as
those in Fig. 11. Forwarding is performed in the following
manner:

@ : After a producer is executed, it looks up an entry in the
CT corresponding to its instruction address. In Fig. 12,
I, looks up the entry in the CT corresponding to its
address (0010), and the CT returns the address of 1.
(0020).

@ : The producer writes its execution result to an entry of
the TFB. This execution result is a consumer’s jump
target. The consumer address obtained in phase @ is
used as an index in the TFB when writing the result. In
Fig. 12, the execution result of /,, is written to the entry
in the TFB corresponding to the address of 1. (0020).

® : When the consumer is fetched, it looks up an entry in
the TFB corresponding to its instruction address. Then,
the TFB returns the forwarded jump target written in
phase @. In Fig. 13, I, looks up the entry in the TFB

283

execution result (jump target)

0010: 7, load 1 <=(r2)

Target
Producer Forwarding

Table (PT) Buffer

jump target

arget Forwarding
Buffer (TFB)

0020: I _jsr_(r1) PC: 0010 PC: 0020

@ PC: 0020
Consumer
Table (CT)

Fig.12 Updating target forwarding buffer.

0010: 7, load 1 <=(r2)

Producer
Table (PT)
PC: 0020
0020: 7, jsr (r1) @ jump target
[arget Fqrwardin,
Buffer|(TFB)
PC: 0020
Consumer Consumer Jump
Table (CT) Target

Fig.13 Forwarding.

corresponding to its address (0020), and TFB returns
the jump target forwarded by 7,.

This process makes it possible for the processor to for-
ward the execution result of a producer to its consumer. On
successful forwarding, the processor overwrites the result of
the branch prediction by a forwarded jump target.

5.4 Early Recovery

The early recovery mechanism introduced in Sect. 4.2.1 can
be implemented by extending slightly. After a producer is
executed, it looks up its consumer in the CT. This process is
similar to phase (D in the previous section. If the execution
result is different from the predicted jump target of the con-
sumer, the processor detects misprediction and then recov-
ers from a mispredicted path. The processor recovers from
misprediction in the same way as a normal recovery case,
and thus the early recovery mechanism does not require any
additional extensions.

6. Code Scheduling

Our proposal requires static code scheduling as described
before. By exploiting properties of virtual function calls,
the following heuristics make it possible for compilers to
schedule instructions for calling virtual functions.

284

class Circle : Drawable {

virtual void Draw();
Drawable* Next();
void Process(Drawable* d){

0

1

2

3

4

5: Draw(); // Case 1
6: d->Draw(); // Case 2
7: Drawable* next = Next();
8

9

0

1

next->Draw(); // Case 3
10: 1
11:),

Fig.14 Schedulable virtual function calls.

1. From Objects
The simplest case is that of a virtual function that is
called from a function of its object. An example of
this case is shown on the line of Case 1 in Fig. 14. On
this line, the virtual function Draw() is called in Pro-
cess(). At the beginning of Process(), the pointer of
an object that Process() belongs to is passed from an
arbitrary caller, and the pointer of Draw() can be loaded
here. Thus, the producer instructions of register indi-
rect jumps, which load function pointers, can be moved
to the beginning of Process().

2. From Arguments
Similar scheduling can be done for a virtual function
call of an object that is passed as an argument of func-
tions. The line of Case 2 in Fig. 14 shows this case.
At the beginning of Process(), the function pointer of
Draw() is determined from the pointer of d. Thus, the
producers of register indirect jumps can be moved to
the beginning of the Process() by static code schedul-
ing.

3. From Returned Objects
Virtual function calls of returned objects can also be
scheduled. The line of Case 3 in Fig. 14 shows this
case. After Next() is called, the function pointer
of Draw() is determined from the returned object of
Next(). Thus, the producers of register indirect jumps
can be moved to the position just after Next() is called.

7. Evaluation

In this section, we evaluate our proposal through simulation.
We first describe the evaluation environment, and then dis-
cuss the performance improvement.

7.1 Evaluation Environment

We evaluated our proposal using a cycle-accurate processor
simulator, Onikiri[7]. We used benchmark programs that
are listed in Table 2. These benchmark programs belong to
the OOCSB A C++ benchmark suite [8]. All the bench-
mark programs are written in C++ in an object-oriented
style. These programs were compiled using gcc 4.2.1 with
the “—~03” option.

During the evaluation of deltablue and richards, we
skipped the first 1 G instructions and evaluated the next

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.2 FEBRUARY 2013

Table 2 Benchmark applications.
Name Description Input Parameter
deltablue | Constraint Solver | 3000 constraints
ixx IDL Parser Som Plus Fresco.idl
Ilcom VHDL Compiler | circuit3.1
richards OS Simulator 1024 iterations
Table 3 Simulation configurations.
Name Parameter
ISA Alpha
fetch width 4 inst.
execution unit int:4, fp:2, mem:2.
inst. window int:32, fp:16, mem: 16
sched. policy age based’
physical reg. int:128, fp:128
ROB 128 entries
LSQ 64 entries
branch pred. 8 KB g-share
br. miss penalty | 10 cycles (minimum)
BTB 2 K entries, 4 way
RAS 8 entries
L1IC 32 KB, 4 way,
64 B/line, 2 cycles
L1DC 32 KB, 4 way,
64 B/line, 2 cycles
L2C 4 MB, 8 way,
64 B/line, 10 cycles
main memory 200 cycles
PT 32 entries
CT 32 entries,4 way set assoc.
TFB 32 entries,4 way set assoc.

100 M instructions. During the evaluation of Icom and ixx,
we evaluated all the instructions executed in the programs.
This is because the number of instructions executed in lcom
and ixx is sufficiently small to simulate them in real time.
The number of instructions of lcom and ixx that were exe-
cuted were approximately 260 M and 38 M, respectively.

Table 3 summarizes the configuration of a baseline pro-
cessor. This basic structure is based on the MIPS R10000
out-of-order superscalar processor [9]. Certain configura-
tions such as the number of integer execution units, the
branch predictor and the caches were set to match those of
modern processors.

We implemented our proposal on the baseline proces-
sor. Table 3 summarizes the configuration of the PT, CT,
and TFB. Note that the PT has the same number of entries
as the integer logical register file.

7.1.1 Evaluation Models

We evaluated the following models:

1. BASE: This is the baseline model in the evaluation.
The benchmark programs are executed on the baseline
processor. Note that the baseline processor predicts the
jump targets of register indirect jumps by using a BTB.

"Branches have higher priority than the other types of instruc-
tions. Within the same type of instructions, older instructions have
higher priorities.

SHIOYA et al.: REGISTER INDIRECT JUMP TARGET FORWARDING

100%
80%
60%
40%
20%

285

O miss

O early recovered
m forwarded

O hit

1]
[7]
<<
[as]

deltablue ixx I

BASE
SCHD
BASE
SCHD

SCHD

0% ‘

SCHDFWD
SCHDFWD

8
3

Fig.15

2. SCHD: This model executes benchmark programs to
which the scheduling method described in Sect.6 is
applied. For simplicity, once the source code of each
benchmark program is compiled to assembly code, the
code scheduling is manually applied to the assembly
code. After this process, the assembly code is finally
assembled to a binary file. In this model, the binary
files are executed on the baseline processor.

3. FWD: This model executes the same binary files as
used in the SCHD. We implemented the forwarding
and early recovery methods described in Sect. 4 on the
baseline processor, which is used by this model.

7.2 Evaluation Result

(1) IPC

Figure 16 shows the IPCs for each model relative to the
baseline model. The average IPC improvement in the
SCHD model is 3.3%. As described in Sect.4.1, static
code scheduling reduces the misprediction penalties of vir-
tual function calls, thereby improving the IPC in this model.
The IPC improvement in the FWD model is 5.4% on aver-
age, and 9.8% at maximum for “richards.”

(2) Number of Recoveries

In this section, we show the evaluation result of branch mis-
prediction penalties, because the IPC improvement is a re-
sult of the reduction of misprediction penalties achieved by
our proposal.

Figure 15 shows the breakdown of the execution re-
sults of register indirect jumps. The labels in the figure are
summarized as follows:

1. hit/miss: The ratio of the number of register indi-
rect jumps whose predicted jump targets are correct or
wrong to the number of all register indirect jumps. In-
structions categorized as hit do not suffer from mispre-
diction penalties while those categorized as miss do.

2. forwarded: The ratio of the number of register indirect
jumps whose jump targets are successfully forwarded
to the number of all register indirect jumps. This ra-
tio does not include correctly predicted register indirect
jumps. These instructions do not suffer from mispre-
diction penalties. This ratio is applicable to only the
FWD model.

o
=
[
[=]
I
5}
@D

g [=]
I
|3

richards

2|l g |2
< | O
5| o | a
I
(&}
w

average

o
=
[
a
I
o
@D

Breakdown of results of register indirect jump to branch prediction.

Relative IPC

deltablue

iXx lcom richards average
ESCHD ®=FWD

Fig.16 Relative IPCs.

3. early recovered: The ratio of the number of register
indirect jumps that are recovered early to the number
of all register indirect jumps. In contrast to the case of
forwarded, these instructions cannot avoid all the mis-
prediction penalties. They suffer from misprediction
penalties that are proportional to the distance between
producer and consumer instructions. This ratio, too, is
applicable to only the FWD model.

The average miss ratios of the BASE and SCHD mod-
els are 7.4% and 7.1%, respectively. In contrast, the average
miss ratio of FWD is significantly reduced, i.e., 0.31%. This
is because mispredicted instructions are corrected through
the forwarding or early recovery. The average forwarded
and early recovered ratios are 1.6% and 6.5%. The average
hit ratios of the BASE, SCHD, and FWD models are similar,
because our method does not affect the accuracy of a branch
predictor.

There are 5.5% register indirect jumps categorized as
forwarded in deltablue, but there are almost no register indi-
rect jumps categorized as forwarded in the other benchmark
programs. This is because we could not schedule producer
or consumer instructions in the three benchmark programs
sufficiently. The IPC improvements in these three bench-
mark programs were achieved by the early recovery mecha-
nism.

It is not possible to determine the degree of IPC im-
provement using the number of early recovered register in-
direct jumps, because each misprediction penalties on early
recovery are varied for different register indirect jumps.
Thus, we show the number of flushed instructions on branch
misprediction.

286

w
(=]
o

(1]
(=]

NN
(=1
(=]

-
w
(=1

—
o Q9
o o o

Flushed Insns. per 1,000 Insns.

deltablue ixx lcom richards average

mBASE SCHD ®mFWD
Fig.17 Flushed instructions per 1,000 instructions.
1.12
1.1 * ¢ X
o 1.08 ° °
a 1.06
© 1.02 —8—8 =
1 ~O-deltablue -B-ixx
0.98 -A-Icom -%-richards
0.96
8 16 32 64
CT entries
Fig.18 Sensitivity of IPCs to CT size.

(3) Misprediction Penalty

Figure 17 shows the number of flushed instructions on mis-
predictions per that of 1,000 committed instructions. Note
that these flushed instructions correspond to the instructions
in the painted areas labeled as flush in Figs. 5 and 6.

On average, the number of flushed instructions in the
FWD model is reduced by 19 (18%) from the BASE model.
Hence, the IPCs of the SCHD model are improved even
though their miss ratios were not reduced, as shown in
Fig. 15.

On average, the number of flushed instructions in the
FWD model is reduced by 39 (37%) from the BASE model,
and hence the FWD achieved IPC improvements. In the
FWD model, the number of flushed instructions is consid-
erably larger than that in the SCHD model; thus, to achieve
significant IPC improvement, code scheduling alone would
not be effective, and forwarding is also necessary.

(4) Sensitivity to Table Size

Figure 18 shows the IPCs for the FWD model relative to the
BASE model with 8, 16, 32, and 64 entries in the CT. In ixx,
their IPCs are improved when the size of CT is increased to
32 entries; in the other benchmark programs, an 8-entry CT
is sufficient.

Similarly, Fig. 19 shows the IPCs for the FWD model
relative to the BASE model with 8, 16, 32, and 64 entries in
the TFB. The results show a similar trend as those in Fig. 18,
and a 32-entry TFB is sufficient. Note that the number of
entries in PT is always the same as the number of logical
registers, as indicated in Table 3.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.2 FEBRUARY 2013

1.12

11 ye 3¢ ¢

1.08

106 —° °
21.04 - -
R — ——
i
1 ~o-deltablue -E-ixx
0.98 —A-Icom -%-richards
0.96
8 16 32 64
TFB entries
Fig.19 Sensitivity of IPCs to TFB size.

Table4 Area overhead.

Table | Capacity

PT 64 bits insn. addr. X 32 entries = 256 B

CT (64 bits insn._ addr. + 54 bits tag) x 32 entries = 472 B
TFB (64 bits insn. addr. + 54 bits tag) x 32 entries = 472 B
Total 1.17KB

Our proposal can work well with such small tables, be-
cause the static number of register indirect jumps is small.
However, the dynamic number of register indirect jumps is
large, and the number of instructions flushed by them is also
large, as shown in Fig.17. As a result, our proposal im-
proves IPCs in the benchmark programs.

(5) Area Overhead

The area overhead of our proposal is mainly incurred by the
three tables, PT, CT, and TFB. Table 4 shows the capac-
ities of these tables, each with 32 entries. The amount of
the capacities of the tables is approximately 1 KB, which is
very small. This is considerably smaller than the capacities
of BTB or PHT, whose latencies are usually one-cycle, and
thus the three tables can be accessed in one-cycle. The ca-
pacities of the three tables are also considerably smaller than
those of L1/L.2 caches, which occupy large areas on a pro-
cessor chip. Thus, the area and energy consumption over-
head incurred on the entire processor using our proposal is
negligible.

8. Related Works

There has been much research on predictors for register in-
direct jumps based on the control flow history [10]-[12].
Such history-based predictors are implemented in commer-
cial processors, such as Intel Pentium-M[13] and IBM
Power 7[14]. These types of predictors exploit the prop-
erty that indirect jump targets are related to the control flow
history. Therefore, they select jump targets based on the
global history of branch directions. These predictors differ
mainly in terms of the usage of global history and tables
that store jump targets. Our proposal can resolve jump tar-
gets that are independent of branch history, because it for-
wards execution results to the processor front-end directly.
In addition, our proposal is independent of prediction-based
methods, and thus our proposal can cooperate with history-

SHIOYA et al.: REGISTER INDIRECT JUMP TARGET FORWARDING

based methods.

Roth et al. proposed a method based on pre-execution.
Their proposal detects virtual function calls and pre-
executes them. It dynamically extracts instructions on
which the register indirect jumps depend. This extraction
is performed via a mechanism based on Dependence-Based
Prefetching (DBP) [15], and thus their proposal requires ad-
ditional hardware for DBP. Moreover, their proposal re-
quires special multi-threading hardware for pre-execution
and pre-load. In their proposal, it is difficult to load the
function pointer of virtual functions early enough by pre-
execution. Therefore, their proposal detects loops including
virtual function calls and pre-loads objects in arrays. As a
result, their proposal requires unrealistic complex hardware.
In contrast, our proposal is realistic because it consists of
only three small tables with simple logic.

9. Conclusion

We propose register indirect jump target forwarding. Af-
ter the execution of the producers of register indirect jumps,
the execution results are forwarded to the processor’s front-
end. The target addresses of register indirect jumps are re-
solved by the forwarded execution results without requiring
prediction. Our proposal improves the performance of pro-
grams written in object-oriented languages, which includes
unpredictable register indirect jumps, because our proposal
forwards the actual execution results. The evaluation re-
sults showed that the IPC improvement is as high as 5.4%
on average and 9.8% at maximum. During the evaluation,
we manually scheduled the instructions of virtual function
calls, but we now intend to research and develop a specific
compiler that automatically schedules instructions for our
proposal.

Acknowledgment

This research is partially supported by Grant-in-Aid for
Young Scientists A No.24680005 from Ministry of Educa-
tion, Culture, Sports, Science and Technology Japan, and by
Grant-in-Aid for Scientific Research B N0.23300013 from
Ministry of Education, Culture, Sports, Science and Tech-
nology Japan.

References

[1] D. Jimenez and C. Lin, “Dynamic branch prediction with percep-
trons,” Proc. International Symposium on High-Performance Com-
puter Architecture, pp.197-206, 2001.

[2] A. Seznec, “Analysis of the o-geometric history length branch pre-
dictor,” Proc. International Symposium on Computer Architecture,
pp-394-405, June 2005.

[3] A. Seznec and P. Michaud, “A case for (partially) tagged geometric
history length branch prediction,” The Journal of Instruction Level
Parallelism, vol.8, pp.1-23, 2006.

[4] C.F. Webb, “Subroutine call/return stack,” IBM Technical Disclo-
sure Bulletin, vol.30, no.11, pp.18-20, 1988.

[5] D.R.Kaeli and P.G. Emma, “Branch history table prediction of mov-
ing target branches due to subroutine returns,” Proc. International

(6]

[7

—

[8

—_

[9]

[10]

[11]

[12]

[13]

[14]

[15]

287

Symposium on Computer Architecture, pp.34—42, 1991.

K. Skadron, P.S. Ahuja, M. Martonosi, and D.W. Clark, “Improv-
ing prediction for procedure return with return-address-stack repair
mechanisms,” Proc. International Symposium on Microarchitecture,
pp-259-271, 1998.

“Processor simulator onikiri 2.” http://www.mtl.t.u-tokyo.ac.jp/
“onikiri2/

U. Holzle, J. Bogda, and S. Dieckmann, “OOCSB: Object-oriented
compilers at UCSB - A C++ benchmark suite,” http://www.cs.ucsb.
edu/ urs/oocsb/

K. Yeager, “The Mips R10000 superscalar microprocessor,” IEEE
Micro., vol.16, no.2, pp.28—41, 1996.

P.Y. Chang, E. Hao, and Y.N. Patt, “Target prediction for indirect
jumps,” Proc. International Symposium on Computer Architecture,
pp-274-283, 1997.

K. Driesen and U. Holzle, “Accurate indirect branch prediction,”
Proc. International Symposium on Computer Architecture, pp.167—
178, 1998.

H. Kim, J.A. Joao, O. Mutlu, C.J. Lee, Y.N. Patt, and R. Cohn, “VPC
prediction: Reducing the cost of indirect branches via hardware-
based dynamic devirtualization,” Proc. International Symposium on
Computer Architecture, pp.424-435, 2007.

S. Gochman, R. Ronen, 1. Anati, A. Berkovits, T. Kurts, A. Naveh,
A. Saeed, Z. Sperber, and R.C. Valentine, “The Intel Pentium M
Processor: Microarchitecture and performance,” Intel Technology
Journal, vol.7, no.2, pp.21-36, 2003.

B. Sinharoy, R. Kalla, W.J. Starke, H.Q. Le, R. Cargnoni, J.A.
Van Norstrand, B.J. Ronchetti, J. Stuecheli, J. Leenstra, G.L.
Guthrie, D.Q. Nguyen, B. Blaner, C.F. Marino, E. Retter, and P.
Williams, “IBM POWER7 Multicore Server Processor,” IBM J. Res.
Dev., vol.55, no.3, pp.191-219, May 2011.

A. Roth, A. Moshovos, and G.S. Sohi, “Dependence based prefetch-
ing for linked data structures,” ACM SIGPLAN Notices, vol.33,
no.11, pp.115-126, 1998.

Ryota Shioya was born in 1981. He re-
ceived his ML.E. and Ph.D. in Information and
Communication Engineering from the Univer-
sity of Tokyo in 2008 and 2011, respectively.
He was a research fellow of the Japan Society
for the Promotion of Science from 2009. Since
2011, he is an assistant professor at the Graduate
School of Engineering, Nagoya University. He
is a member of IPSJ and IEEE.

Naruki Kurata was born in 1987. He is
currently a doctorial student in Information and
Communication Engineering in The University
of Tokyo. He received his ME degree in Infor-
mation and Communication Engineering from
The University of Tokyo in 2012. He is a mem-
ber of IPSJ.

288

Takashi Toyoshima is a software engineer
at Google working on the Google Chrome Web
browser. He works on WebSocket and SPDY.
He was a researcher at Fujitsu Laboratories Lim-
ited working on the K supercomputer, and de-
veloped the ICC: a Tofu interconnect controller
chip for the K supercomputer as a design team
lead and a hardware engineer at Fujitsu Limited.
His major concerns are computer systems, es-
pecially on microprocessors and networks. He
received M.S. in information science and tech-
nology from the University of Tokyo in 2006, and B.S. in electronic engi-
neering from the University of Tokyo in 2004. He was a board member of
IPSJ SIGARC from 2008 to 2011. He is a member of the ACM and IPSJ.

Masahiro Goshima was born in 1968. He
received his MLE. in engineering and Ph.D. in
informatics from Kyoto University in 1994 and
2004, respectively. He was a research fellow
of the Japan Society for the Promotion of Sci-
ence from 1994. From 1996, he was an assistant
professor in the Graduate School of Informat-
ics, Kyoto University. Since 2005, he has been
an associate professor in the Graduate School of
Information Science and Technology, the Uni-
versity of Tokyo. He has been engaging in the
research area of computer architecture. He received IPSJ Yamashita SIG
research award and IPSJ best paper award in 2001 and 2002, respectively.
He wrote a book titled “Digital Circuits”. He is a member of IPSJ and
IEEE.

Shuichi Sakai was born in 1958, re-
ceived B.S., M.S. and D.E. from the Univer-
sity of Tokyo in 1981, 1983 and 1986, respec-
tively. He had been working at Electrotechni-
cal Laboratory (1986-1998), Massachusetts In-
stitute of Technology (MIT, 1991-1992), Real
World Computing (RWC, 1993-1996), Univer-
sity of Tsukuba (1996-1998). In 1998, he be-
came an Associate Professor of the University
of Tokyo where he has continuously been a Full
Professor since 2001. His major concerns are
computer systems and their applications, especially computer architec-
tures, interconnection networks, optimizing compilers, low power architec-
tures and dependable systems. He received several awards, including IPSJ
Best Paper Award (1991), IBM Science Award (1991), Ichimura Academic
Award (1995), IEEE Outstanding Paper Award (1995), Sun Distinguished
SpeakerAward (1997). He is a member of IPSJ (fellow since 2010), JSAIL,
ACM, and IEEE.

IEICE TRANS. INF. & SYST., VOL.E96-D, NO.2 FEBRUARY 2013

