
Energy Efficiency Improvement of Renamed
Trace Cache through the Reduction of

Dependent Path Length
Ryota Shioya∗ and Hideki Ando∗

∗ Department of Electrical Engineering and Computer Science,
Nagoya University, Nagoya, Aichi, Japan

Email: {shioya, ando}@nuee.nagoya-u.ac.jp

Abstract—A renaming logic is a high-cost module in a
superscalar processor, and it consumes significant energy. For
mitigating this, renamed trace cache (RTC), which caches re-
named operands, was proposed. However, conventional RTCs
have several problems such as low capacity-efficiency, large
hardware overhead and insufficient caching of renamed operands.
We propose a semi-global renamed trace cache (SGRTC) that
caches only renamed operands whose distances from producers
outside traces are short, and it solves the problems of conventional
RTCs. Evaluation results show that SGRTC achieves 64% lower
energy consumption for renaming with a 0.2% performance
overhead compared to a conventional processor.

I. INTRODUCTION

In out-of-order superscalar processors, logical registers are
renamed for removing false dependencies between instruc-
tions. Register numbers are renamed by accessing a table called
register map table (RMT). The circuit area of an RMT has
recently increased owing to the widespread use of SMT and
other reasons described in Section II. For example, Alpha
21464 has a rename logic that is larger than its 64KB L1-
data cache[14]. Consequently, it makes its complexity, energy
consumption, and heat generation, a considerably serious issue.
As a result, the RMT in the Intel P6 architecture consumes 4%
of the energy consumed by the processor, which is comparable
to that of its reservation station[9], and its power-density is the
fourth highest on-chip[11].

To overcome these problems, Vajapeyam et al. proposed
a renamed trace cache (RTC) [22] that extends a trace cache
(TC)[15]. A conventional TC caches instructions ordered by a
dynamic execution sequence beyond branch instructions. An
RTC is a TC that caches instructions with renamed operands.
When instructions with renamed operands are obtained from
an RTC, register renaming can be omitted, thus it is possible
to reduce the number of ports of an RMT. An RMT generally
comprises a RAM, and the area of a RAM grows proportion-
ally with the square of the number of ports. Consequently,
the reduction in the number of ports makes the area of the
RMT very small. However, the RTC method has a limitation
on caching renamed operands, i.e., the RTC method can cache
renamed operands only when operands refer producers, which
are dependent instructions of the operands, in the same trace.
As a result, its advantage is limited, and the RTC method can
cache renamed operands only for approximately 30% operands
(Section VI).

On the other hand, Ichibayashi et al. independently pro-
posed another RTC method that can cache renamed operands
that refer producers outside a trace[4]. For simplicity, we
refer to the RTC of Vajapeyam et al. as local renamed trace
cache(LRTC) and that of Ichibayashi et al. as global renamed

trace cache(GRTC).
GRTC does not have the limitation of LRTC for caching

operands, but it considerably reduces capacity-efficiency,
which is the number of cached static instructions per a certain
amount of cache capacity. A similar problem is exhibited by a
conventional TC, but the problem of GRTC is more severe. In
a conventional TC, its capacity-efficiency is reduced because
there are multiple traces starting from the same basic block.
Additionally, in GRTC, each trace depends on its successor
path outside a trace, and it is necessary to cache different traces
starting from the same basic block for each successor path.
The increase in the length of a dependent path, exponentially
increases the number of generated traces, and the capacity-
efficiency is considerably reduced. Moreover, in GRTC, it
is necessary to store the target addresses of indirect jumps
to its tag array for checking a path, and it considerably
increases a circuit area. As a result, its energy-overhead mostly
cancels reduced energy consumption by reducing the RMT, as
described in Section VI.

We propose semi-global renamed trace cache (SGRTC),
which is based on GRTC. Our proposal caches only renamed
operands whose distances from producers outside traces are
short. The number of generated traces is exponential with
distance from producers outside traces, thus limiting off-trace
distances makes it possible to reduce the number of generated
traces, and it improves its capacity-efficiency. Additionally,
limiting dependent distances, probabilities that there are indi-
rect jumps in a dependent path decrease. Consequently, storing
the target addresses of indirect jumps can be omitted without
significant performance degradation, and it makes it possible
to reduce energy consumption.

Although the researches of conventional LRTC and GRTC
suggested that the complexity of a rename logic can be miti-
gated, but their energy consumption has not been quantitatively
evaluated yet. One of the contributions of this paper is that
we quantitatively evaluated the energy consumption and the
performance of these conventional methods.

Evaluation results presented in Section VI show that energy
consumption for register renaming is reduced by 64% from a
processor with a conventional instruction cache, and it suffers
only 0.2% performance degradation. Further, the evaluation
results show that the proposed method achieves 8.5% and 4.5%
higher performance, 23% and 60% lower energy consumption,
and 41% and 151% higher performance-energy ratio (the
inverse of energy-delay product) than conventional LRTC and
GRTC, respectively.

978-1-4799-6492-5/14/$31.00 ©2014 IEEE 416

II. REGISTER MAP TABLE

In this section, we first describe the problems of an RMT,
and then, we summarize related work.

A. Problems of Register Map Table
Register numbers are renamed by reading and writing

an RMT. An RMT is a table with relationship information
between logical and physical register numbers, and it generally
comprises multi-ported RAM[24], [13]1.

An RMT occupies a considerably large circuit area. For
general ISAs with a three-operand format, an RMT requires
4 ports per instruction[17], [24]. For example, in a processor
whose decode width is 8, such as IBM Power 8[7], [2], a
straightforward implementation of an RMT requires 32 ports2.
The area of a RAM grows proportionally with the square of
the number of ports[23], and therefore, the area of the RMT
is large despite of its small number of entries.

Moreover, spreading SMT processors makes the RMT con-
siderably larger. SMT processors require RMTs with capacities
that are proportional to the number of threads for retaining
thread contexts. In fact, Alpha 21464 with 4-threads SMT has
a rename logic that is larger than its L1-data cache[14]. The
recent IBM Power 8[7], [2] supports 8-threads SMT and this
problem gets more severe.

As a result, the energy consumption and generated heat
of the RMT is considerably important issue. The energy
consumption of a RAM is proportional to its area and access
frequency[23]. Almost all instructions access the RMT more
than once, thus the number of accesses to the RMT is con-
siderably high. Consequently, the RMT consumes significantly
larger energy than a data cache in the same area. As a result,
the RMT in the Intel P6 architecture consumes 4% of the
energy consumed by the processor, which is comparable to
that of its reservation station[9]. In recent processors such as
IBM Power 8, its rename width is significantly wider than
that of the Intel P6 and they support SMT, thus, their RMT
is significantly larger than that of the Intel P6 and consumes
more energy.

B. Related Work
For mitigating these problems, several techniques were

proposed for RMTs. Some researchers focused on the fact that
all ports of an RMT are generally not entirely used, and they
proposed methods that reduce the number of the ports of an
RMT for mitigating its complexity[10], [18]. These methods
can reduce the number of ports proportionally to the effective
use rate of the ports, but this reduction is limited.

Moshovos et al. proposed a method that focuses
on checkpointing an RMT for recovering from branch
misprediction[11]. This method takes checkpoints only for
branch instructions with low confidence, and it makes it
possible to reduce the resources for the RMT. However this
method requires an additional confidence estimator for branch
instructions, and it consumes additional energy.

Liu et al. proposed a method that uses a register map cache
(RMC)[8]. The RMC is smaller than the main RMT, and it can

1There is a method with a CAM-based RMT[5], and our proposal also can
be implemented on a CAM-based method.

2In processors with wide decode width, techniques that restrict the number
of renames allowed per processor clock cycle can be used to reduce the number
of rename ports and hence the RMT area and energy consumption.

ScheduleDispatch

Instruction

window

I-
C
a
c
h
e

RMT

RenameFetch

Instruction pipeline

Wide

Fig. 1. General Front-end

ScheduleDispatch

Instruction

windowR
T
C

RMT

Fetch

Instruction pipeline

RenameFetch

I-
C
a
c
h
e

Narrow

Out of pipeline

Fig. 2. GRTC’s Front-end

reduce its latency and energy consumption on hit; however, its
miss penalty may degrade performance.

There are only two conventional methods that cache re-
named operands, to our knowledge, and they are LRTC[22]
and GRTC[4]. We think that this is because caching renamed
operands is essentially difficult. The following sections de-
scribe why caching renamed operands is difficult, and describe
how to cache renamed operands in the conventional methods.

C. Caching Renamed Operands
For mitigating the problems, caching renamed operands is

an attractive idea; however, it is generally difficult for the
following reasons: 1) Physical registers are assigned from
a free list, and consequently, assigned register numbers are
not reproducible and reusable. 2) The producers of source
operands are changed depending on the executed paths, and
consequently, the physical register numbers of source operands
are not reusable.

LRTC[22] described in Section I avoids the above prob-
lems and partially reuses renamed operands by the following
methods. LRTC uses a physical register file (RF) that is local
for each trace in addition to a conventional physical RF. Each
entry of this local physical RF is sequentially assigned to each
instruction in a trace, and is referred with an offset from the
start of a trace3．In a trace, the positional relation between
instructions and their execution paths are guaranteed to be fixed
for the behavior of TC. Consequently, LRTC can resolve the
above two reasons and reuse renamed operands in a trace.

However, this means that LRTC can cache renamed
operands only when source operands refer destination operands
generated in the same trace. As a result, LRTC cannot work
well and it can only cache approximately 30% of renamed
operands (Section VI).

III. GLOBAL RENAMED TRACE CACHE

Unlike LRTC, GRTC is proposed for caching renamed
operands that refer producers outside a trace[4]. Figures 1 and
2 show the front-end of a conventional superscalar processor

3There is a more optimized implementation, but we describe this imple-
mentation for simplicity.

417

r1 ←

r1 ← - [-2]

r2 ← [-1]

I
0

:

I
1

:

I
2

:

I
3

:

ld

bgt

add

neg

r1 ←I
0

: ldld r1I
0

: ← …

bgt r1I
1

:

I
2

:

add r2I
3

: ← r1

neg r1 ← - r1

I
3

…

> 0 then

+ …

… …

[-1] I
3

> 0 then

+

r2 ← [-2]I
3

: add …+

I
1

: bgt [-1] I
3

> 0 then

(a) original instructions (c) I
1

is taken(b) I
1

is not taken

I
4

: …I
4

: …

I
4

: …

trace T
b

trace T
c

Fig. 3. Example of Conversion to Dualflow Ops

and that with GRTC, respectively. A conventional superscalar
processor renames operands for each fetched instruction. On
the other hand, in GRTC, fetched instructions are directly
dispatched to the instruction window, because their operands
are already renamed. Operands are renamed only when traces
are generated on an RTC miss, and consequently, the number
of ports of an RMT can be reduced without performance
degradation. This reduction of ports considerably reduces its
area and energy consumption.

GRTC modifies the allocation and reference of physical
RFs, and it makes it possible to reuse renamed operands
without the restriction of caching in LRTC. This section
describes GRTC.

A. Register File Method
GRTC uses two RFs, physical register file (PRF) and logi-

cal register file (LRF). The entries in these RFs are allocated in
the same manner as the allocation of a reorder buffer and LRF
in a processor with a reservation station. However, only the
allocation method is same. The issue queue in GRTC does not
have values and the RFs are accessed only after issuing from
the issue queue. In particular, the PRF has a ring structure
and its entries are sequentially allocated. The LRF has the
execution results of retired instructions. Instructions write their
execution results to the LRF in sequential order.

B. Instruction Method
In GRTC, source operands are referred with the displace-

ment between instructions as “the execution result before
n instructions.” This displacement is equal to displacement
between entries allocated to instructions on the PRF, because
the entries of the PRF are sequentially allocated to instructions.
Each instruction obtains the physical register number of source
operands by adding its displacement to the physical register
number of its own destination operand. When a producer is
distant more than WS, which is the size of an instruction
window4, the producer is guaranteed to be retired and its
execution result is obtained from the LRF.

An instruction with this displacement is called dualflow op.
GRTC dynamically converts instructions to dualflow ops for
generating traces on RTC miss. This conversion is carried out
with an RMT that is similar to an RMT in an usual rename-
logic [4].

C. Caching Dualflow Ops
GRTC generates traces including dualflow ops for each

execution path, and separately caches them. The term “trace”
means instructions ordered by a dynamic execution sequence.
This caching uses a structure that is similar to a conventional
TC. The conventional TC generates and caches traces for each
execution path in a trace. On the other hand, GRTC generates

4WS is the size of a reorder buffer.

Ip1

It_start

: others

: branch

Ip_br

It_br

It_end

trace

Ip2

Fig. 4. Control Flow and Path Information

and caches traces for each backward execution path outside a
trace in addition to those in a trace.

We explain this scheme by using an example presented
in Figure 3. In this figure, instructions in (a) are converted
to dualflow ops in (b) when the branch I1 is not taken, and
those in (c) are vice versa. I3 in (b) and (c) have different
displacements, −1 and −2, respectively. Their displacements
are different depending on the backward execution path of I3.
GRTC generates traces Tb and Tc for each pattern and caches
them for each backward execution path.

GRTC distinguishes traces by using path information that
is similar to that used in a conventional TC. The term “path
information” is specifically the directions of branches and the
target addresses of indirect jumps. GRTC stores this path
information and the start address of path to a tag array.
When GRTC decides hit or miss of the RTC, it generates
path information from PC and branch history information and
compares it with the path information stored in a tag array.

D. Reusing Renamed Operands
GRTC resolves the two reasons for which renamed

operands cannot be reused (Section II-C). First, the non-
reproducibility of physical register numbers is solved by the
sequential assignment of registers and operand access with
displacement. The displacement, which is a static distance
between instructions, is always constant. Consequently, the
displacement once converted can be reused. Second, producer
changing for each path is solved by caching traces for each
backward execution path. As a result, GRTC can cache and
reuse renamed operands.

IV. PROBLEM OF GLOBAL RENAMED TRACE CACHE

This section describes two problems of GRTC.

A. Low Capacity-Efficiency
The first problem of GRTC is its low capacity-efficiency.

Compared to TC and LRTC, each trace depends on its

418

backward path outside a trace, and it is necessary to cache
different traces starting from the same basic block for each
backward path. The increase in the length of a dependent path
exponentially increases the number of generated traces, and
the capacity-efficiency is considerably reduced.

We explain this problem by using Figure 4. This figure
shows the control flow graph, and each node in the graph
represents an instruction. In the following, we explain the fetch
of the trace that starts from It start to It end by comparing
TC and GRTC. Note that we do not explain a case of LRTC,
because the fetch methods of LRTC and TC are identical.

(1) TC： A trace hits if the path from It start to It end

in the trace matches path information in the tag array. In this
case, the length of path information is three instructions, which
is the length of a trace.

(2) GRTC： In addition to the path in a trace, it requires
matching the backward execution path of a trace and path
information in the tag array. The length of the backward path of
a trace is determined by the largest displacement in the source
operands in a trace (we refer to it as dependent path length).
For example, when the source operands of It start, It br and
It end refer the destination operand of Ip1, the length of path
information is six instructions, which is three instructions in
the trace and three instructions in the backward path from
Ip1 to It start. This is longer than that of TC, which is three
instructions.

The maximum dependent path length in GRTCS is the size
of instruction window, WS. This is because producers that are
distant more than WS must be retired, and their results are
guaranteed to be in the LRF, as described in Section III-A.

Because of the difference of dependent path lengths, the
numbers of generated traces in TC and GRTC are considerably
different. For example, in TC whose length of a trace is three
instructions, the number of generated traces that started from
the same address is 23 = 8 in the worst case when all instruc-
tions in a trace are branches. On the other hand, in GRTC,
each trace depends on its backward path outside a trace in
addition to the inside of a trace. The maximum dependent path
length is WS, which is more than 200 instructions in recent
processors[7], [2], and consequently, the number of generated
traces is more than 2200 in the worst case. As described above,
the number of generated traces is considerably higher and the
capacity-efficiency of GRTC is consequently decreased.

B. Overhead of Tag
The second problem is the hardware overhead of the stored

path information in a tag:
(1) Increased Information for Branch Directions: The

path information of GRTC is similar to the information of
branch directions in a trace in TC. As described before, the
dependent path length of GRTC is considerably longer than
that of TC, and consequently, more hardware is necessary to
store it.

(2) Stored Target Address of Indirect Jumps： In TC,
the target address of an indirect jump is not stored to its tag
array to avoid the hardware overhead. Consequently, a trace is
finished if an indirect jump exists in a case of TC. This does
not decrease performance significantly because the appearance
frequency of indirect jumps is sufficiently low.

On the other hand, in GRTC, if the target address of an
indirect jump is not stored to a tag array, its performance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 10 20 30 40 50 60 70 80 90 100110120

C
u

m
u

la
ti
v
e

 r
a

ti
o

Distance to producer (instructions)

astar
bzip2
gcc
gobmk
h264ref
hmmer
libquantum
mcf
omnetpp
perlbench
sjeng
xalancbmk
average

Fig. 5. Distribution of Distances to Producers

degrades sufficiently[4]. This is because hit/miss decision in
GRTC depends on its backward path outside a trace. When
the target addresses are not stored to a tag array, it is unable
to cache a trace with indirect jumps that are placed backward
within the dependent path length of the trace, because match-
ing its path is not guaranteed. For example, in Figure 4, if
Ip br is an indirect jump, instructions above Ip1 can not be
cached. As a result, when an indirect jump appears, it is unable
to cache a considerable number of instructions in front of the
indirect jump.

Thus, GRTC stores some target addresses of indirect jumps
to a tag array. If there are indirect jumps more than the
maximum number, traces are not cached and are renamed with
an RMT. Ichibayashi et al. described that it requires two-target
addresses in a tag array for avoiding performance degradation;
however, they did not evaluate its overhead such as energy
consumption[4].

However, the overhead of its additional hardware is consid-
erably large. For example, when an instruction length is four
bytes and a trace length is 4 instructions, the required capacity
for the data part of a trace is 16 bytes. On the other hand, when
the length of a target address is 64 bits, the tag part with two
target addresses for the path information consumes capacity
more than its data part. Moreover, it requires WS directions
of branches, and consequently, the capacity of the tag array is
considerably larger than that of a conventional cache and TC.

V. SEMI-GLOBAL RENAMED TRACE CACHE

We propose semi-global renamed trace cache (SGRTC),
which is based on GRTC. Our proposal caches only renamed
operands whose distances from producers outside traces are
short.

A. Motivation
Many source operands of consumers generally refer pro-

ducers near to the consumers. Figure 5 shows the distribution
of the distances from each source operands to its producer
in SPECCPU INT 2006 [20]5. The horizontal axis shows the
distances from each source operand to its producer, and the
vertical axis shows the cumulative ratio to all source operands.
For example, the point plotted at 10 on the horizontal axis and
0.7 on the vertical axis means that: source operands whose
distances to their produces are less than 10 instructions occupy
70% of all source operands. This preliminary evaluation result
shows that about 70% of source operands refer producers
within ten instructions in SPECCPU INT 2006.

On the other hand, the dependent path length of a trace
(Section IV-A) is considerably longer than the distance from

5Evaluation environment is the same as that used in Section VI

419

Dispatch

R
T
C

RMT

FetchRenameFetch

I-
C
a
c
h
e

Instruction pipelineOut of pipeline

In
s
tr
u
c
ti
o
n

W
in
d
o
w

Fig. 6. GRTC’s Front-end

Dispatch

RMT

Rename

Instruction pipeline

R
T
C

I-
C
a
c
h
e

Fetch-IFetch-R

In
s
tr
u
c
ti
o
n

W
in
d
o
w

Fig. 7. SGRTC’s Front-end

each source operand to its producer. This is because the
dependent path length of a trace is determined by the largest
distance from a source operand to a producer in the trace. As
a result, even though the distance from most source operands
to those producers is within ten instructions, the average
dependent path length is over 80 instructions in GRTC.

B. Limiting Caching by Dependent Path Length
We focus on this fact that many source operands generally

refer producers near to the consumers, and propose a method
that caches only renamed operands whose distances from
producers outside traces are short. The other operands are
stored to an RTC as logical register numbers, and they are
renamed with an RMT after instruction decoding.

We describe our proposal, SGRTC, by comparing the con-
ventional GRTC and SGRTC. Figures 6 and 7 show the front-
end pipeline of GRTC and SGRTC, respectively. In GRTC,
on RTC hit, fetched traces are immediately dispatched to the
instruction window. On RTC miss, instructions are fetched
from an instruction cache, and then they are renamed. The
stages accessing an instruction cache and an RMT are placed
outside an instruction pipeline, and those stages work only on
RTC miss. On the other hand, SGRTC has the stages that can
access an instruction cache and an RMT regardless of RTC
hit/miss, and these stages work as follows:

(1) RTC Hit: In Figure 7, the successive Fetch-I stage
does not access the instruction cache. The successive Rename
stage only renames operands stored in traces as logical register
numbers.

(2) RTC Miss： The Fetch-I stage accesses the instruction
cache, and the Rename stage renames operands.

The traces in RTC are replaced and filled in the same way
as a conventional TC[15]. As described above, on RTC miss,
instructions are fetched from the instruction cache and are
renamed. Then the renamed instructions are dispatched to the
instruction window, and at the same time, they are fed to a fill
unit with path information. The fill unit generates trace data
from the fed instructions and path information, and it is filled

Ip0: r1←…

Ip1: r1←…

Ip2 : r1←…

Ip3: r2←…

It0: …←r2+…

It1: …←r1+…

[-5]

[-3]

[-1]
[-4]

trace

Fig. 8. Reference Distance for Each Instruction

to RTC. In this time, a replacement target is determined with
LRU policy in the same way as conventional caches.

SGRTC can reduce the number of ports of its RMT as in
the conventional GRTC. When the number of ports is short,
the front-end is stalled, and the operands in a fetch group are
renamed in multi-cycles.

C. Effects of Proposal
Although our proposal is very simple, it can effectively

solve the two problems of the conventional GRTC described
in Section IV, and it can cache renamed operands more than
LRTC does.

1) Improving Capacity-Efficiency: Our proposal limits the
dependent path lengths of traces to short distances, and it
improves the capacity-efficiency of RTC. We explain this
improvement by using the example shown in Figure 8, which
is the control flow graph similar to Figure 4. In this figure,
each instruction has only one source operand. We focus on
the trace with It0 and It1, and there are three backward paths
that arrive in this trace.

In general, when the distance from a consumer to a
producer increases, the number of paths to its producer also
increases. The producer of It0 is near to It0, and is always Ip3
regardless of which backward path is executed. On the other
hand, the producers of It1 are different for each backward path,
and they are Ip0, Ip1 and Ip2.

In conventional GRTC, the dependent path length is deter-
mined by the largest displacement in the source operands in
a trace. Consequently, different traces are generated for every
three paths arriving at It0.

On the other hand, we assume a case of SGRTC that limits
dependent path length to 1 instruction. The producer of It0 is
within 1 instruction from It0, and consequently, its renamed
operand is cached. On the other hand, all the producers of
It1 that are distant from It1 more than by 1 instruction, their
renamed operands are not cached. That is, unrenamed r1 is
cached to RTC as it is regardless of which backward path is
executed, and then it is renamed even if RTC hits.

In this case, there is only one path that arrives at It0 from
1 instruction before, and consequently, the number of traces
that may be generated is 1. The number of generated traces is

420

reduced, and it improves its capacity-efficiency.
As described in Section IV, increase in the dependent

path lengths of traces exponentially increases the number
of generated traces, and the capacity-efficiency of RTC is
considerably reduced. Our proposal can shorten the dependent
path lengths of traces from over 200 instructions to about
12 instructions (Section VI), and consequently, the number of
generated traces is considerably reduced, which significantly
improves its capacity-efficiency.

Renaming operands stored as logical register numbers does
not cause significant overheads. As described before, most
source operands refer producers within ten instructions, and
therefore, the number of source operands stored as logical
register numbers is small. Consequently, these source operands
can be renamed by a small RMT that is originally used for
renaming when traces are generated on RTC misses in GRTC,
and its energy consumption is small.

2) Reducing Hardware Overhead of Tag: Our proposal
can omit storing the target addresses of indirect jumps to
the tag array without significant performance degradation. As
described in Section IV-B, the conventional GRTC requires
some target addresses in a tag array for avoiding significant
performance degradation. On the other hand, our proposal
can shorten the dependent path lengths of traces to about
ten instructions. Consequently, if the target addresses are not
stored to the tag array, and it cannot cache traces with indirect
jumps that are placed backward within the dependent path
lengths of the traces, the number of non-cachable instructions
is not more than ten instructions.

VI. EVALUATION

We evaluated SGRTC and other methods, and this section
presents the evaluation results.

A. Evaluation Environment
We evaluated IPCs using an in-house cycle-accurate pro-

cessor simulator. We used all the programs from the SPEC
CPU 2006 benchmark suites[20] with ref data sets. The pro-
grams were compiled using gcc 4.2.2 with the “-O3” option.
We skipped the first 10G instructions and evaluated the next
100M instructions.

TABLE I. BASELINE CONFIGURATION

fetch width 8 inst.
rename width 8 inst.
issue width 8 inst.
issue queue 64 entries, unified
execution unit int:4, fp:4, mem:4
ROB 224 entries
branch predictor 8 KB g-share, 2K entries BTB
SMT 8 threads
L1DC 64 KB, 8 way, 64 B/line, 2 cycles
L1IC 32 KB (34.3 KB1), 8 way, 64 B/line, 2 cycles
L2C 512 KB, 8 way, 64 B/line, 8 cycles
L3C 8 MB, 8 way, 64 B/line, 24 cycles
main memory 200 cycles
ISA Alpha

TABLE II. CONFIGURATIONS OF TC AND RTC

TC 1 K traces (37 KB1), 8 way, trace:8 inst., 3 cycles
LOCAL 1 K traces (39 KB1), 8 way, trace:8 inst., 3 cycles
GLOBAL 1 K traces (82.9 KB1), 8 way, trace:8 inst., 3 cycles
S GLOBAL 1 K traces (39.4 KB1), 8 way, trace:8 inst., 3 cycles

1These capacities include the tag parts.

We evaluated the energy consumption for register renaming
by evaluating the arrays and their peripheral circuits related to
our proposal, which are the RMT, TC, RTC and instruction
cache. We do not evaluate the energy consumption of the com-
parators for dependency checking on register renaming[17],
[24], but each comparator consists of few transistors, and thus,
we think that their energy consumption is comparatively small.
Moreover, our proposal omits this dependency checking on
RTC hit, and consequently, this results in a conservative energy
comparison for our technique.

The energy consumption for register renaming and the area
of each array are evaluated by using CACTI 6.5 [12], which
simulates cell arrays and peripheral circuits. We assume 32nm
technology (ITRS-HP/nominal), 4GHz operating frequency,
0.9V VDD, and 320K junction temperature. We assume that
each cell consists of a regular 4T storage and two access
transistors per port. The arrays are not banked6. The static and
dynamic access energy of the arrays is calculated by CACTI
at the stated PVT assumptions. Temperature is assumed to be
fixed and leakage is thus modeled as a constant. The number
of accesses to each array structure and elapsed time is provided
by our cycle-accurate processor simulator. The dynamic array
access energy from CACTI is multiplied by the array access
frequency from the simulator to form the total dynamic energy.

B. Evaluated Models
Table I lists the configuration of a baseline processor. Its

major micro-architectural parameters are based on those of
IBM Power 8[7], [2], which include parameters such as fetch
width, the size of instruction window, the number of FUs, and
cache hierarchies. Note that we use the configuration based on
the IBM Power 8 with wide front-end, because it is well known
that the throughput of a processor front-end has a significant
impact to its performance[15], [16], [1], and the front-end
width of recent high-performance commercial processors is
increased[19], [7], [2], [6]. Moreover, recent high-performance
processors generally equip SMT[19], [7], [2], [6], [3], and
thus their RMTs have a considerably large area and energy
consumption(Section II). Our proposal makes it possible to
solve the problems of such high-performance processors.

We evaluated the following models based on baseline
configuration:

(1) BASE: A model with an I-cache only.
(2) TC: A model with TC.
(3) LOCAL: A model with LRTC.
(4) GLOBAL: A model with GRTC.
(5) S GLOBAL: A model with SGRTC, which is our

proposal.
Table II summarizes the configurations of TC and RTC

used in these models. The capacity of RTC in S GLOBAL
is set to 1K traces that has a similar area to that of the
conventional I-cache. In each model, each trace includes two
branches. The TC and RTC in the other models have the same
capacity. Hit/miss of TC and RTC is determined in the first
cycle, and then the I-cache is accessed on TC/RTC misses. In
GLOBAL, the number of indirect jumps stored to a tag array
is two(Section IV-B).

The RMT in BASE and TC has 32 ports in total. An
RMT generally requires 1-write and 3-read ports per a single

6Details are described in [12], [21]

421

0

0.2

0.4

0.6

0.8

1

1.2

1.4

as
ta
r…

bz
ip
2

gc
c

go
bm

k

h2
64

re
f

hm
m
er

lib
qu

an
tu
m

m
cf

om
ne

tp
p

pe
rlb

en
ch

sj
en

g

xa
la
nc

bm
k

G
em

sF
D
T
D
…

bw
av

es

ca
ct
us

A
D
M

ca
lc
ul
ix

de
al
II

ga
m
es

s

gr
om

ac
s

lb
m

le
sl
ie
3d

m
ilc

na
m
d

po
vr
ay

so
pl
ex

sp
hi
nx

3

to
nt
o

w
rf

ze
us

m
p

ge
om

ea
n…

R
e
la

ti
v
e
 I
P

C

TC LOCAL GLOBAL S-GLOBAL

INT FP

Fig. 9. IPC Relative to BASE

0.8

0.85

0.9

0.95

1

1.05

2 4 6 8 10 12 14

R
e
la

ti
v
e
 I
P

C

Dependent Path Length (Inst.)

RMT-5p
RMT-4p
RMT-3p

Fig. 10. IPC Versus RMT Read Ports and Dependent Path Length

2-source operand instruction[17], [24]: 1) 1-write port for
updating new destination mapping, 2) 2-read port for reading
source operand mapping, and 3) 1-read port for reading old
destination mapping. As a result, each instruction with 2-
source operand requires 4 ports. We assume that the rename-
width of the processor is 8 as presented in Table I, and thus,
the RMT requires 4 × 8 = 32 ports in total. In the other
models, the number of the read ports of the RMT is reduced.
The specific parameters of the read ports are determined by
the evaluation in the next section.

C. Investigating Configurations
First, for determining the configuration of S GLOBAL,

we evaluated its performance while varying its dependent path
length and the number of read ports of its RMT. Figure 10
shows the IPCs of S GLOBAL relative to BASE. These IPCs
are on the geometric mean of all benchmark programs. Each
line labeled as “RMT-Np” shows the IPCs of a configuration
with an RMT that has N read ports. Figure 10 shows that IPCs
degrade if the number of read ports of the RMT is less than
4, and in the configuration with the 4-read ports RMT, the
configuration whose dependent path length is 12 instructions
has the highest performance. Thus, hereafter, we evaluate
S GLOBAL with a 4-read ports RMT and 12-instructions
dependent path length.

D. IPC
Figure 9 shows the IPCs for each model relative to BASE.

S GLOBAL degrades the IPC of BASE by only 0.2% on
a geometric mean. As described in Section V-C1, our pro-
posal improves the capacity-efficiency, and consequently, its
performance penalty described in Section IV-A is considerably
reduced, and it cancels each other out by the improved fetch
throughput in the same manner as TC. On the other hand,

TABLE III. RATIO OF CACHED RENAMED OPERANDS

LOCAL GLOBAL S GLOBAL
31.7% 69.3% 57.3%

S GLOBAL degrades the IPC of TC by 3.7% on the geomet-
ric mean, because TC also improves the fetch throughput.

LOCAL degrades the IPC of BASE by 8.5% on the
geometric mean, and its IPC degradation is considerably
larger than that of S GLOBAL. This is because LOCAL can
cache only 31.7% renamed operands on average as shown in
Table III, and this ratio is about half of that in S GLOBAL.
As a result, the shortage of the RMT ports stalls the front-end
and it degrades its performance.

GLOBAL also degrades the IPC of BASE by 4.5% on the
geometric mean. This is because of its low capacity-efficiency
described in Section IV-A.

E. Energy Consumption
Figure 11 shows the energy consumption7 of the RMT in

each model normalized by BASE. This energy consumption
is on the average of all benchmark programs. “overhead” in
each model shows the overhead energy by the addition of the
TC or RTC compared to BASE. This overhead energy includes
the energy consumption for reading the instruction cache and
filling generated traces on RTC miss. In S GLOBAL, the
RMT is used for renaming source operands stored as logical
register numbers into traces on RTC hit, as described in
Section V-C1. The part labeled as RMT in Figure 11 includes
the energy consumption for this renaming.

S GLOBAL considerably reduces the energy consumption
of the RMT including its overhead. The energy consumption
of the RMT in S GLOBAL is reduced by 64% compared with
BASE, because both the area and the access frequency of the
RMT are reduced. The energy consumption is reduced by 65%,
23%, and 60% compared with TC, LOCAL, and GLOBAL,
respectively. LOCAL does not reduce its energy consumption
compared to S GLOBAL, because LOCAL cannot cache re-
named operands sufficiently, as described above. GLOBAL has
a large overhead caused by the tag array in RTC as described
in Section IV, and consequently, this overhead cancels out
the reduction of the energy consumption in the RMT. The
energy consumption of the RMT without the overhead in
GLOBAL is smaller than that of the RMT in S GLOBAL,
and those are 16% and 22% of that of the RMT in BASE,
respectively. This is because renaming is completely omitted

7This includes both dynamic and static energy consumption.

422

0

0.2

0.4

0.6

0.8

1
R

el
at

iv
e

E
ne

rg
y

C
on

su
m

pt
io

n

RMT overhead

Energy -64%
from BASE

Fig. 11. Energy Consumption Relative to
BASE

0

0.5

1

1.5

2

2.5

3

R
el

at
iv

e
P

er
f.

E
ng

. R
at

io

PER+41%

over LOCAL

PER+158%

over GLOBAL

PER+175%

over BASE

Fig. 12. Performance Energy Ratio (Inverse
of EDP) Relative to BASE

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

R
e
la

ti
v
e
 A

re
a

RMT (R)TC

Fig. 13. Area Relative to BASE

in GLOBAL on RTC hit, but few operands are still renamed
in S GLOBAL as described in Section V-C1. However, this
energy consumption for renaming on RTC hit in S GLOBAL
is negligible, and the total energy consumption in S GLOBAL
is significantly reduced compared with that in GLOBAL and
BASE as described before.

F. Performance Energy Ratio
In this section, we show a performance/energy ratio (PER)

of each model, which is equal to the inverse of energy-
delay product (EDP), and a higher PER shows better effi-
ciency. Figure 12 shows the PER relative to that of BASE.
S GLOBAL considerably improves its PER compared to the
other models because the performance is improved/maintained
and the energy consumption is reduced at the same time.
Figure 12 shows that the PER of S GLOBAL is improved
by 175%, 180%, 41%, and 158% compared to BASE, TC,
LOCAL, and GLOBAL, respectively.

G. Area
Figure 13 shows the circuit area of the RMT and RTC

in each model. These areas are normalized by that of BASE.
S GLOBAL considerably reduces the area of the RMT com-
pared to BASE, but the addition of the RTC slightly increases
its total area by 7.0%.

VII. CONCLUSION

We propose a SGRTC that caches only renamed operands
whose distances from producers outside traces are short.
Evaluation results show that SGRTC achieves 64% lower
energy consumption for register renaming with only 0.2%
performance overhead compared to a conventional proces-
sor. Further, the evaluation results show that the proposed
method achieves 8.5% and 4.5% higher performance, 23% and
60% lower energy consumption, and 41% and 151% higher
performance-energy ratio (the inverse of energy-delay product)
than conventional LRTC and GRTC, respectively.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 24680005.

REFERENCES
[1] B. Black, B. Rychlik, and J. P. Shen, “The block-based trace cache,”

in ACM SIGARCH Computer Architecture News, vol. 27, no. 2, 1999,
pp. 196–207.

[2] E. Fluhr, J. Friedrich, D. Dreps, V. Zyuban, G. Still, C. Gonzalez,
A. Hall, D. Hogenmiller, F. Malgioglio, R. Nett, J. Paredes, J. Pille,
D. Plass, R. Puri, P. Restle, D. Shan, K. Stawiasz, Z. Deniz, D. Wendel,
and M. Ziegler, “Power8: A 12-core server-class processor in 22nm soi
with 7.6tb/s off-chip bandwidth,” in Proc. of the Int. Solid-State Circuits
Conference, 2014, pp. 96–97.

[3] T. R. Halfhill, “Oracle says sparc is tops,” Microprocessor Report
4/15/13, pp. 1–6, 4 2013.

[4] H. Ichibayashi, R. Shioya, H. Irie, M. Goshima, and S. Sakai, “Anti-
dualflow architecture,” IPSJ Trans. on Advanced Computing Systems,
vol. 1, no. 2, pp. 22–33, 2008.

[5] R. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24–36, 1999.

[6] K. Krewell, “Intel’s haswell cuts core power,” Microprocessor Report
9/24/12, pp. 1–5, September 2012.

[7] K. Krewell, “Power8 muscles up for servers,” Microprocessor Report
9/2/13, pp. 1–6, September 2013.

[8] T. Liu and S.-L. Lu, “Performance improvement with circuit-level
speculation,” in Proc. of the Int. Symp. on Microarchitecture, 2000,
pp. 348–355.

[9] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: Speculation
control for energy reduction,” in Proc. of the Int. Symp. on Computer
Architecture, 1998, pp. 132–141.

[10] A. Moshovos, “Power-aware register renaming,” Computer Engineering
Group Technical Report, University of Toronto, pp. 01–08, 2002.

[11] A. Moshovos, “Checkpointing alternatives for high-performance power-
aware processors,” 2003, pp. 318–321.

[12] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Cacti 6.0: A
tool to model large caches,” HP Laboratories, Tech. Rep., 2009.

[13] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying the complexity
of superscalar processors,” University of Wisconsin-Madison, Tech.
Rep., Nov 1996.

[14] R. Preston, R. Badeau, D. Bailey, S. Bell, L. Biro, W. Bowhill,
D. Dever, S. Felix, R. Gammack, V. Germini, M. Gowan, P. Gronowski,
D. Jackson, S. Mehta, S. Morton, J. Pickholtz, M. Reilly, and M. Smith,
“Design of an 8-wide superscalar risc microprocessor with simultaneous
multithreading,” in Proc. of the Int. Solid-State Circuits Conference,
vol. 1, 2002, pp. 334–472.

[15] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: A low latency
approach to high bandwidth instruction fetching,” in Proc. of the Int.
Symp. on Microarchitecture, 1996, pp. 24–35.

[16] E. Rotenberg, S. Bennett, and J. E. Smith, “A trace cache microarchitec-
ture and evaluation,” IEEE Transactions on Computers, vol. 48, no. 2,
pp. 111–120, 1999.

[17] E. Safi, A. Moshovos, and A. Veneris, “On the latency and energy of
checkpointed superscalar register alias tables,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 18, no. 3, pp. 365–
377, Mar. 2010.

[18] R. Sangireddy, “Reducing rename logic complexity for high-speed and
low-power front-end architectures,” IEEE Transactions on Computers,
vol. 55, no. 6, pp. 672–685, 2006.

[19] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A.
Van Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie,
D. Q. Nguyen, B. Blaner, C. F. Marino, E. Retter, and P. Williams, “IBM
POWER7 Multicore Server Processor,” IBM J. Res. Dev., vol. 55, no. 3,
pp. 191–219, May 2011.

[20] SPEC CPU2006 suite http://www.spec.org/cpu2006/ , The Standard
Performance Evaluation Corporation. [Online]. Available: http://www.
spec.org/cpu2006/

[21] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi, “Cacti 5.1.”
HP Laboratories, Tech. Rep., 2008.

[22] S. Vajapeyam and T. Mitra, “Improving superscalar instruction dispatch
and issue by exploiting dynamic code sequences,” in Proc. of the Int.
Symp. on Computer Architecture, 1997, pp. 1–12.

[23] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective 4th Edition. Pearson/Addison-Wesley, 2011.

[24] K. Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE
Micro, vol. 16, no. 2, pp. 28–41, 1996.

423

