
Compiling and Optimizing Real-world Programs for
STRAIGHT ISA

Toru Koizumi, Shu Sugita, Ryota Shioya, Junichiro Kadomoto, Hidetsugu Irie, Shuichi Sakai
Graduate School of Information Science and Technology, The University of Tokyo Tokyo, Japan

Email: {koizumi, sugita, kadomoto, irie, sakai}@mtl.t.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

Abstract—The renaming unit of a superscalar processor is a
very expensive module. It consumes large amounts of power
and limits the front-end bandwidth. To overcome this problem,
an instruction set architecture called STRAIGHT has been
proposed. Owing to its unique manner of referencing operands,
STRAIGHT does not cause false dependencies and allows out-of-
order execution without register renaming. However, the compiler
optimization techniques for STRAIGHT are still immature, and
we found that the naive code generators currently available can
generate inefficient code with additional instructions. In this
paper, we propose two novel compiler optimization techniques
and a novel calling convention for STRAIGHT to reduce the
number of instructions. We compiled real-world programs with
a compiler that implemented these techniques and measured
their performance through simulation. The evaluation results
show that the proposed methods reduced the number of executed
instructions by 15% and improved the performance by 17%.

Index Terms—instruction-level parallelism, optimizing com-
piler, callee-saved registers

I. INTRODUCTION

As Amdahl’s law suggests, the single-thread performance
of a core for executing sequential portions of a program
is essential, even in the age of multi/many-core processors.
The current mainstream strategy for improving single-thread
performance is to extract more instruction-level parallelism by
increasing the processing width of a core and the size of the
scheduling window [1]–[3]. As a result, even cores in mobile
devices, such as the ARM Cortex A77, can execute more than
ten instructions in a single cycle [4].

However, an increase in the processing width of a core can
lead to a superlinear increase in the circuit area, resulting
in a significant increase in power consumption. One of the
units that causes such an increase is the renaming unit in
the front-end of the core. The renaming unit renames register
numbers using a table called a register map table (RMT)1

to remove false dependencies between instructions. The RMT
mainly consists of a multiport memory, with the number of
ports proportional to the processing width. The circuit area
rapidly increases as the processing width of the renaming unit
increases [5], [6].

To overcome this problem, an instruction set architecture
(ISA) called STRAIGHT has been proposed [7]. STRAIGHT
has a register file where registers are sequentially allocated

This work was partially supported by JSPS KAKENHI Grant Numbers
JP19H04077, JP20H04153, JP20J22752.

1It is also known as a register alias table or register allocation table (RAT).

and refers to operands, not by register number, but by distance
between instructions. Because of this new register architecture,
STRAIGHT has no false dependencies and does not require
register renaming [7]. As a result, the renaming logic itself
can be omitted in the STRAIGHT processor; this removes the
front-end bottleneck and improves the scalability of the reorder
buffer (ROB).

In STRAIGHT, compiler optimization techniques are still
immature, and we have found that the naive code generators
currently available can produce inefficient code. In regular
ISAs, optimization is traditionally well studied, and opti-
mization techniques such as code generation and register
allocation are mature. However, the optimization techniques
for STRAIGHT remain unexplored. This is due to the fol-
lowing two reasons: 1. STRAIGHT refers to operands by
inter-instruction distance, so existing optimization techniques
for register allocation cannot be applied. 2. STRAIGHT has
inherent constraints, owing to its distance referencing. In
existing research, the authors have manually optimized small
benchmarks, such as Dhrystone, to achieve performance com-
parable to the RISC-V ISA [7]. However, the properties of
STRAIGHT for larger real-world programs are not clear. We
implemented a STRAIGHT toolchain to compile real-world
programs, evaluated the SPEC CPU benchmarks, and found
that the existing compiler can significantly increase the number
of instructions generated.

In this paper, we propose three new compiler optimization
techniques for STRAIGHT. The first reduces the number of
instructions generated by reordering the instructions, while
satisfying the inherent constraints of STRAIGHT. This op-
timization corresponds to register-allocation optimization in
general instruction sets. The second is called aggressive spill;
it improves performance by deliberately spilling out values,
even when sufficient registers are available2. The third is a
novel function-calling convention that implements callee-saved
registers (CSRs) in STRAIGHT. The method of implementing
callee-saved registers in STRAIGHT has not been clear;
however, we propose a method to implement it in this paper.

We implemented these optimization techniques in a com-
piler using the LLVM [9] compiler infrastructure and evaluated
its performance using a simulator. We compiled the programs
contained in the SPEC CPU 2006/2017 benchmark suites and

2This is an extended version of our content presented at a workshop [8].
We extended the proposed method and increased the number of evaluations.

used them in our evaluation. The evaluation results showed that
the optimization techniques reduced the number of executed
instructions by 15% and improved the performance by 17%
on average.

II. EXISTING BASIC COMPILER ALGORITHMS FOR
STRAIGHT

A. STRAIGHT instruction set architecture

STRAIGHT is an ISA that uses inter-instruction distances
rather than register names to specify the source operands. In
STRAIGHT, the source operand is specified in the form, “use
the result of the nth-previous instruction.” In the assembly
representation, square brackets are used to indicate this. For
example, when referencing the result of an instruction exe-
cuted two instructions previously, [2] is used as the operand.
Each instruction implicitly reserves one destination register
and uses it in a write-once manner. Owing to the instruction-
length limitation, there is a maximum value defined in the
ISA for the distance that can be used to specify the source
operand. Therefore, the results of old instructions become
unreferenceable after a certain number of instructions have
been executed. Taking advantage of this feature, we can use a
ring buffer for the register file. The destination registers can be
allocated in order from the ring buffer. Even so, it is guaranteed
that only registers that are out of life will be overwritten.
Register renaming is no longer necessary because there are
no false dependencies [7].

STRAIGHT uses a calling convention that uses relative
distances from branch instructions used for function calls
and returns (such as the jal (jump and link) and ret
(return) instructions). Expressly, the instructions that generate
the argument values are placed so that the instruction im-
mediately before the function call instruction generates the
first argument, and the instruction two previous generates the
second argument, and so forth. In addition, the instruction
to generate the return value is placed so that the instruction
immediately before the return instruction generates the return
value.

B. STRAIGHT-specific code generation

In the following, we explain the “distance fixing” algorithm
[7], which is specific to the STRAIGHT compiler; that is, the
parts where conventional RISC compiler algorithms cannot be
applied. Conventional algorithms can be used for conversion
from high-level programming languages to the compiler’s in-
termediate representation, and for optimization in static single-
assignment (SSA) form [10], [11].

When generating STRAIGHT code, the RISC code-
generation algorithm can be applied to most parts; however, a
different algorithm is required for register allocation. This is
because STRAIGHT, unlike RISC, is an instruction set whose
instruction specifies operands by distance. A new algorithm
is needed for code generation when selecting an operand

int fill(int* arr) {
int val = 42;
int N = 100;
int i = 0;
for(; i < N; ++i) {

arr[i] = val;
}
return 0;

}

(a) Source code

Function_fill
addi $zero, 42
addi $zero, 100
addi $zero, 0
mv [1] # i
mv [6] # &arr[i]
mv [4] # N
mv [6] # val
mv [8] # _RetAddr
nop

L_for:
blt [6], [4], L_end
st [4], [6], 0
addi [7], 4
addi [9], 1
mv [1] # i
mv [3] # &arr[i]
mv [10] # N
mv [10] # val
mv [10] # _RetAddr
j L_for

L_end:
addi $zero, 0
ret [4]

(b1) STRAIGHT assembly

addi $zero,42
addi $zero,100
addi $zero,0
mv [1]
mv [6]
mv [4]
mv [6]
mv [8]
nop

st [4],[6],0
addi [7],4
addi [9],1
mv [1]
mv [3]
mv [10]
mv [10]
mv [10]
j

blt [6], [4]

(b2) Control-flow graph (CFG)

addi $zero, 0
ret [4]

addi $zero,42
addi $zero,100
addi $zero,0
nop

st [5],[7],0
addi [8],4
mv [8]
mv [8]
mv [8]
addi [8],1
j

blt [2], [3]

(c) CFG of optimized code

addi $zero, 0
ret [7]

Fixed
region

Fig. 1. Example of building a fixed region: The live variables are transferred
in a common order to the area indicated in yellow at the end of the basic
block (called the fixed region).

that depends on the execution path3. In RISC, this problem
is solved by using the same register in all execution paths,
while in STRAIGHT, the problem is solved by matching
the distances for all execution paths. The following is an
algorithm for generating STRAIGHT code from a static single-
assignment format.

1) Enumerate values that are live at a merging point and
add a phi function for each live variable.

2) For each value referenced by the phi function, add a
mv (move or register-transfer) instruction just before the
merging point. By doing this, the referenced value is
generated at the same relative position in each path.

When instructions are added using this algorithm, the final
instruction sequence is as shown in Fig. 1 (b).

3In RISC, this corresponds to the case of creating a phi function in a static
single-assignment format, whereas in STRAIGHT, it includes the case where
an instruction after a merging point refers to the result of an instruction before
branching. This is because the distance between instructions generally differs
when the execution paths differ.

III. OPTIMIZING COMPILER TECHNIQUES FOR STRAIGHT
In the following, we explain three proposals that con-

tribute to performance. The first is an algorithm to reduce
the redundant instructions added during “distance fixing,” as
described in Section II-B, by reordering the instruction order.
The second is an optimization that reduces the number of
executed instructions by aggressively spilling out some live
values, even if there are enough registers. The third is a
proposal for a calling convention that introduces callee-saved
registers.

A. Distance adjustment to remove redundant instructions
1) Overview: Existing basic compiler algorithms add re-

dundant mv instructions in many cases. For example, in
Fig. 1 (b), the operands referenced by the blt (branch less
than) instruction are placed four and six instructions before,
regardless of the execution path, by being relayed via the mv
instruction. The existing algorithm guarantees the compila-
tion of arbitrary programs by creating a fixed region, which
contains mv instructions to relay the values just before the
merging point. However, we found that this method generated
many redundant mv instructions. For example, mv instructions
can be removed by reordering the instructions so that the
instructions after merging can directly reference the operands
before merging, as shown in Fig. 1 (c).

We find that the addition of the mv instruction is inevitable
in the following two situations:

1) When holding a loop constant. In this case, at least one
mv instruction per loop constant is required in the loop to
refer to it by a static distance, regardless of the number
of times to loop.

2) When the instruction order cannot be reordered because
of restrictions on the execution order, such as a true
dependency. In this case, some mv instructions are
required because it is impossible to refer to the values
directly without building a fixed region.

The algorithm to find the appropriate positions to add such mv
instructions consists of the following two steps. Step 1 involves
adding mv instructions to hold the loop constants and pre-
processing for Step 2. Step 2 involves adding mv instructions
to reorder the instruction order.

2) Step 1: Add mv instructions to hold loop constants:
To refer to a loop constant by a static distance, regardless of
the number of times the loop is performed, at least one mv
instruction is required in the loop. When adding phi functions,
as described in Section II-B, phi functions that define the same
loop constant refer to each other and form a loop (Fig. 2 (a)).
This reference-relationship loop can be eliminated by adding
one mv instruction at any point in the loop (Fig. 2 (b)). In
other words, this type of loop can be eliminated by adding mv
instructions at the position corresponding to the feedback edge
set problem. The graph that we should consider has vertices
corresponding to phi functions and edges corresponding to
reference relations.

We provide a detailed implementation of this method. We
perform the following procedure for each feedback edge.

(1) = phi (a), (3)
(3 instructions)

j L_join1

(3) = phi (2), (c)
(3 instructions)

j L_join3

(2) = phi (b), (1)
(3 instructions)

j L_join2

(1) = phi (a), (3)
(3 instructions)

j L_join1

(3) = phi (2), (c)
(3 instructions)

mv [13]
j L_join3

(2) = phi (b), (1)
(3 instructions)

j L_join2

(a) SSA form (b) After adding mv instruction

Fig. 2. Adding mv instructions to hold loop constants. The location of the
mv instruction corresponds to the solution of the feedback edge set problem.

First, we add mv instructions that refer to a phi function
corresponding to the destination of the feedback edge to the
basic block where the phi function is located. Then, we change
the reference of the phi function corresponding to the source
of the feedback edge to the added mv instruction.

In terms of implementation, the graph to be constructed is
a directed multigraph with vertices corresponding to the basic
block. This modification is needed because Step 1 also serves
as a pre-processing step for Step 2. To construct this graph,
we add a directed edge from A to B, for each phi function in
basic block A that references a phi function in basic block B.

After adding the mv instructions, the graph of the reference
relationship of the phi function becomes a directed acyclic
graph (DAG). Every DAG has at least one topological order-
ing. The following Step 2 is performed for each corresponding
basic block in its topological order.

3) Step 2: Add mv instructions to eliminate dependency
inversions: The values referenced after the merging point must
be placed at the same relative distance regardless of the execu-
tion path. However, it is difficult to solve this problem directly.
Thus, we solve the relaxed problem of placing values in the
same order regardless of the execution path. If we solve this
problem, it is straightforward to satisfy the original constraints
by adding nop (no operation) instructions as appropriate.

In many cases, the constraint, “the values are generated in
the same order in all execution paths,” can be satisfied by
swapping instructions. This is not possible when the order
of instructions has constraints owing to a dependency, and
the order constraints in multiple execution paths contradict
each other. In such a case, adding the mv instructions needs
to remove the dependency.

Whether this constraint is inconsistent can be solved by
detecting a cycle in the directed graph with the dependencies
as edges. By solving the feedback edge set problem of the
directed graph, it is possible to derive where to add the mv
instruction. However, the addition of a single mv instruc-
tion may solve multiple constraints simultaneously. Therefore,
minimizing the number of mv instructions to be added may

...
(1) = ld [9], 0
(2) = addi [1], 2
(3) = addi [2], 3

j L_join

...
(4) = ld [9], 0
(5) = ld [9], 0
(6) = add [1], [2]

j L_join

phi (3), (4)
phi (2), (5)
phi (1), (6)

...

...
(1) = ld [9], 0
(3) = addi [1], 3
(2) = addi [2], 2
(7) = mv [3]

j L_join

...
(4) = ld [9], 0
(5) = ld [9], 0
(6) = add [1], [2]

j L_join

phi (3), (4)
phi (2), (5)
phi (7), (6)

...

(a) SSA form (b) One solution: add one mv instruction

...
(4) = ld [9], 0
(5) = ld [9], 0
(6) = add [1], [2]
(8) = mv [2]
(9) = mv [4]

j L_join

phi (3), (9)
phi (2), (8)
phi (1), (6)

...

(c) Another solution: add two mv instructions

...
(1) = ld [9], 0
(2) = addi [1], 2
(3) = addi [2], 3

j L_join

three hyperedges

Fig. 3. Adding mv instructions to eliminate dependency inversions. (a) Two execution paths have conflicting execution-order constraints. The hypergraph has
three hyperedges, which form loops. (b) Adding one mv instruction resolves the constraints. This corresponds to the best solution of the feedback hyperedge
set problem. (c) Adding two mv instructions also resolves the constraints. This corresponds to another solution of the feedback hyperedge set problem.

not correspond to the best solution to the feedback edge
set problem. The problem to be solved for minimizing it
corresponds to the feedback hyperedge set problem of a
hypergraph.

The method of constructing the hypergraph with vertices
corresponding to the phi functions is as follows. First, for
each execution-order constraint, a directed edge is created. The
edge’s destination corresponds to a phi function that references
the instruction’s result to be executed first in a path. The source
of the edge corresponds to a phi function that references the
instruction’s result to be executed later in the path. Then, the
directed edges with the same destination for each execution
path are grouped and converted into a directed hyperedge of
the following form, e.g., {src : v1, v2, v3; dst : v4} (Fig. 3).
A hyperedge in this hypergraph represents a constraint that is
solved by adding a mv instruction.

The location in which to add the mv instructions is derived
from the solution of the feedback hyperedge set problem.
Where the mv instructions should be added corresponds to the
feedback hyperedges (Fig. 3). We need to add a mv instruction
whose source operand is the result of the instruction referenced
by the phi function corresponding to the destination of a
hyperedge. Then, we should change the reference of the phi
function to the result of the added mv instruction.

After adding the mv instructions, the hypergraph of the
execution-order constraints becomes a directed acyclic hyper-
graph. Because this graph has no cycles, we can calculate a
topological ordering. Then, the execution order of each instruc-
tion that generates a result that references the phi function can
be reordered to be in that topological order. After reordering
the instructions, we appropriately insert nop instructions,
starting from the end of the basic block. Instructions at the
same relative distance will generate results referenced to the
phi function in all execution paths.

B. Aggressive spilling

In STRAIGHT, the mv instruction is executed once per loop
to hold a loop constant and it is needed for each loop constant.
This is because the distance needs to be the same, regardless
of the number of times the loop is performed. The distance
adjustment optimization cannot eliminate this problem.

Even if the variable is a loop constant that is not referenced
in the loop (hereinafter referred to as a non-referenced loop
constant), it still needs to be relayed by executing a mv
instruction. We found that when there is a reference across
the loop, the referenced variable act as a non-referenced
loop constant; the generated code requires many dynamic
instructions to relay it.

We propose an optimization method that reduces the number
of instructions to be executed by spilling out these variables.
We call this optimization “aggressive spill” because it spills
out, even if the number of logical registers is sufficient.
Although this slightly increases the number of load/store
instructions, it is worth doing because reducing the number
of executed mv instructions has significant effect, if the loop
is executed in sufficiently large numbers.

The procedure for spill-code insertion by this optimization
can be treated in a unified manner with the procedure for spill-
code insertion when there is a reference across function calls.
The details are given in Appendix.

C. STRAIGHT calling conventions with callee-saved registers

The existing calling conventions of STRAIGHT lack callee-
saved registers, and the lack of callee-saved registers increases
the number of load/store instructions. Because the number of
instructions in a function is generally unknown, references
across function calls cannot specify their operands by distance.
STRAIGHT does not have named registers because of the
characteristics of the instruction set, so it is impossible to set
registers as callee-saved. For this reason, the existing calling
convention defines all registers as caller-saved [7]. This causes

int f(int x) {
return x + 42;

}
int g(int val) {

...
int i = 0;
int prod = 1;
for(; i < 100; ++i) {

prod *= f(i);
}
...

}

(a) Source code

Function_f
add [2], 42
ret [2]

Function_g
...
addi $zero, 0 # i
addi $zero, 1 # prod
nop

L_for:
addi $zero, 100
blt [4], [1], L_end
stsp [5], 4 # i
stsp [5], 8 # prod
mv [7] # arg0 = i
jal Function_f
ldsp 8 # prod
ldsp 4 # i
mul [2], [4]
j L_for

L_end:
...

(b) Existing calling
conventions

Function_f
add [5], 42
mv [5] # CSR2 relay
mv [5] # CSR1 relay
mv [5] # CSR0 relay
ret [5]

Function_g
...
addi $zero, 0 # i
addi $zero, 1 # prod
nop

L_for:
addi $zero, 100
blt [4], [1], L_end
mv [5] # arg0 = i
nop # CSR2
mv [7] # CSR1 = i
mv [7] # CSR0 = prod
jal Function_f
mv [3]
mul [3], [5]
j L_for

L_end:
...

(c) Proposed calling conventions
(# of CSRs is 3)

Fig. 4. Calling conventions in existing research [7] and proposed calling
conventions. CSR refers to callee-saved registers. In the proposed calling
conventions, we add arguments for the CSRs after the first argument of the
function and add return values for relaying the CSRs after the return value of
the function.

large numbers of memory accesses when calling small leaf
functions, which leads to performance degradation.

To address this problem, we propose a convention for intro-
ducing callee-saved registers in STRAIGHT. This convention
uses the relative position to the branch instruction, similar to
the existing calling conventions described in Section II-A. It
uses the relative distance from the branch instruction to specify
the callee-saved registers. Hence, callee-saved registers can be
dealt with in the same manner as arguments and return values
by adding extra arguments and return values to the function.

Fig. 4 shows how the code changes, as a result of a change
in conventions. In this convention, the caller passes the values
to be preserved across calls as extra arguments. In the callee,
mv instructions are executed to relay the values passed as extra
arguments directly to the corresponding return values. This
allows the caller to receive them as return values across calls.
Thus, it is possible to specify an operand across the function
call by a static distance while delaying the spill decision until
the execution of the callee.

The STRAIGHT compiler can use conventional compiler

techniques to select values for callee-saving. However, in
STRAIGHT, the number of instructions for placing arguments
in the caller and relaying values in the callee increases
by setting the callee-saved register. Therefore, to obtain the
full effect of callee-saving, it is necessary to avoid adding
redundant instructions. In particular, variables that are subject
to aggressive spill optimization should not be subject to callee-
saving.

IV. EVALUATION

A. Methodology

The evaluation was performed by measuring the number of
cycles required to execute the benchmark programs through
simulations. The benchmark programs used for the evaluation
were 401.bzip2, 605.mcf s, 619.lbm s, 657.xz s, and Core-
Mark [12]. The first four are benchmark programs from real-
world programs in SPEC CPU 2006 [13] and SPEC CPU
2017 [14] benchmark suites, all written in C. CoreMark is
a synthetic benchmark and not a real-world program; however
it was used for comparison with the previous study [7].

The benchmark programs were compiled using our optimiz-
ing STRAIGHT compiler. The base STRAIGHT compiler was
acquired from the author of an existing study and was based
on version 7 of LLVM [9]. We implemented the proposed
optimizations on it.

For the C library, we used musl libc [15], a lightweight libc
implementation. This was because the base STRAIGHT com-
piler was for bare metal and could not compile programs that
required the C library. We ported musl libc for STRAIGHT.
The changes we made for porting are described below.

In addition, RISC-V [19] was chosen as the existing archi-
tecture for comparison. The optimizing compiler for RISC-V
was llc static compiler included in version 9 of LLVM.
This is the closest to the LLVM version of the compiler for
STRAIGHT that can correctly compile RISC-V. To make the
comparison fair, we used musl with the above changes to
compile the RISC-V binaries.

A cycle-accurate simulator, Onikiri2 [20], was used for
the simulation. First, we confirmed that the overall program
behavior was correct by using a userland-only instruction-
set simulator. To compare the performance of the different
binaries, the performance was measured using the same region.
The regions were specified in the form of the number of
times line A was executed to the number of times line B was
executed. Because it would be too time-consuming to simulate
all the benchmark programs, we selected a region around the
function with the most instructions to be executed in RISC-V
for each benchmark. The details of the measurement sections
and their characteristics are listed in Table I.

Table II lists the parameters of the processors used in the
simulations. We prepared several parameters with different
front-end widths and reorder-buffer (ROB) capacities, which
were considered to increase the scalability by STRAIGHT.
We referred to the Apple Firestorm core [21] to determine the
number of execution units and cache parameters. The RISC-V
model has a two-cycle-longer front-end latency owing to the

TABLE I
THE MEASUREMENT SECTIONS AND THEIR CHARACTERISTICS

Benchmark Measurement sections Characteristics
CoreMark 10 iterations Synthetic benchmark
401.bzip2 From the 1st execution of the mainGtU to its 100,000th execution Burrows–Wheeler transform (string comparison and sort)
605.mcf_s From the 1st execution of the primal_bea_mpp to its 5th execution Thrashing access and quicksort
619.lbm_s 100,000 iterations of the loop in LBM_performStreamCollideTRT Many long chains of floating-point number instructions
657.xz_s From the 1st execution of the sha_compress to its 300th execution Bit manipulations and loads/stores unfriendly to store set

TABLE II
THE PARAMETERS OF THE PROCESSOR USED IN THE SIMULATION

6-fetch 8-fetch 12-fetch 16-fetch

Front-end width 6 8 12 16

Front-end latency STRAIGHT: 5 cycles, RISC-V: 7 cycles
(fetch + decode + rename + dispatch)

Issue width 16
Issue latency 4 cycles (issue + register read)

Execution unit Int×8, Float×4, Load×3, Store×2,
iMul×2, iDiv×1, fDiv×1

Reorder buffer 640 1024 2048 4096

Logical registers STRAIGHT: Unified×127
RISC-V: Int×31, FP×32

Physical registers (Sufficient amount)
Branch predictor 8-component TAGE [16], 130-bit history, 8 KiB
Branch target Branch target buffer (BTB): 4-way, 8192 entries
predictors Return address stack (RAS): 16 entries
Mem. dep. pred. Store set [17], 9-bit producer ID, 4096 entries
L1I cache 128 KiB, 8-way, 64B line, 3 cycles
L1D cache 128 KiB, 8-way, 64B line, 3 cycles

L2 cache 8 MiB, 16-way, 64B line, 12 cycles
Stream prefetcher [18], distance 8, degree 2

Main memory 80 cycles

register renaming4. Exception recovery was assumed to be
instantaneous; this is a favorable setting for RISC-V, unlike
the existing study where took into account the time for ROB
walking.

B. Porting musl for STRAIGHT

To compile real-world programs written in C, a C standard
library is required. We chose musl libc as the C standard
library; it is lightweight and almost written in C. Based
on the 2c2477d commit hash, which was the latest at the
time of development, we ported it to STRAIGHT from the
implementation of the 64-bit version of RISC-V, which has
almost the same application binary interface (ABI). The main
changes made in the port are as follows:

a) Removing inline assembly instructions: Although
most of musl is written in C, it contains some inline assem-
bly instructions to perform atomic memory operations. Our
STRAIGHT compiler does not support inline assembly, so we
removed them and wrote the equivalent memory operations
with the C language. Although it lost atomicity because of
these modifications, it did not cause any problems because all
the benchmarks we used were single-threaded programs.

4STRAIGHT has a shorter front-end pipeline because only a simple adder
is needed to obtain a physical register number of a source operand [7].
The calculation is done in parallel with the other decoding processes; thus,
removing the dedicated rename stage does not extend the critical path.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

op
t.

D
is

t.
ad

ju
st

A
gg

. s
pi

ll
B

ot
h

B
ot

h+
C

SR
4

N
o

op
t.

D
is

t.
ad

ju
st

A
gg

. s
pi

ll
B

ot
h

B
ot

h+
C

SR
4

N
o

op
t.

D
is

t.
ad

ju
st

A
gg

. s
pi

ll
B

ot
h

B
ot

h+
C

SR
4

N
o

op
t.

D
is

t.
ad

ju
st

A
gg

. s
pi

ll
B

ot
h

B
ot

h+
C

SR
4

N
o

op
t.

D
is

t.
ad

ju
st

A
gg

. s
pi

ll
B

ot
h

B
ot

h+
C

SR
4

coremark bzip2 lbm_s mcf_s xz_s

Branches Load Store Move Integers FLOPs NOP Other

Fig. 5. Number of instructions for each instruction type. For each benchmark,
the values are normalized to those of the case without optimizations.

b) Avoiding problems with quadruple-precision floating-
point numbers: The implementation for RISC-V, which we
used as a base for porting, assumed that the long double
was a quadruple-precision floating-point number. This was a
problem because the simulator we used could not simulate
quadruple-precision floating-point operations. To address this
problem, we rewrote the source code for the part where the
long double is represented so that it works, even if it is
a double-precision floating-point number. In this modification,
we referred to architectures where the long double is a
double-precision floating-point number. In addition, we ex-
cluded mathematical functions and complex functions for the
long double from the compilation target. This modifica-
tion did not affect the results because the benchmarks used in
this study did not contain any code that used long doubles.

C. Results

1) Change in the number of instructions, owing to our
proposal: Fig. 5 shows the extent to which our proposed
methods reduce the number of instructions executed. For each
benchmark, the values were normalized to those of the case
without optimizations (using the basic compiler algorithm [7]
shown in Section II-B). Instructions that were discarded be-
cause of speculative execution were not included.

In all benchmarks, except for 619.lbm_s, our proposed
optimizations significantly reduced the number of executions
of mv instructions and contributed to a reduction in the total

0%

5%

10%

15%

20%

25%

30%

35%

40%

DABCDABCDABCDABC DABCDABCDABCDABC DABCDABCDABCDABC DABCDABCDABCDABC DABCDABCDABCDABC

6-fetch 8-fetch 12-fetch16-fetch 6-fetch 8-fetch 12-fetch16-fetch 6-fetch 8-fetch 12-fetch16-fetch 6-fetch 8-fetch 12-fetch16-fetch 6-fetch 8-fetch 12-fetch16-fetch

coremark bzip2 lbm_s mcf_s xz_s

Fig. 6. Performance improvement owing to our proposal. ‘D’ corresponds to the distance-adjustment optimization, ‘A’ corresponds to the aggressive-spill
optimization, ‘B’ corresponds to applying both optimizations, and ‘C’ corresponds to introducing four CSRs to ‘B’. For each benchmark, the case without
optimization is used as the 0% baseline.

number of executed instructions. There was almost no reduc-
tion in the number of instructions executed in 619.lbm_s
because most of the executions are executing a single large
loop (∼350 instructions). The loop contains few function calls
or merging points, and the only non-referenced loop constant
is the return address of the function containing this loop;
therefore, we almost cannot reduce the mv instructions.

Although the aggressive-spill optimization increases the
number of load/store instructions, it reduces the number of
mv instructions by more than that, resulting in a significant
reduction in the total number of instructions executed. On the
other hand, the distance-adjustment optimization reduces the
number of mv instructions without increasing the number of
other instructions. Furthermore, these two optimizations are
independent of each other, as they reduce completely different
mv instructions.

The introduction of callee-saved registers has essentially
increased the number of instructions because it requires the
mv instruction to copy the value to the location defined by
the calling conventions. In 401.bzip2 and 605.mcf_s,
which call many leaf functions with a small number of
execution instructions, the introduction of callee-saved reg-
isters reduces the number of load/store instructions required
for spilling, while the number of mv instructions increases.
For 619.lbm_s and 657.xz_s, which have fewer leaf
function calls, there is almost no change in the number of
instructions. In CoreMark, where all the small functions are
inline expanded, the number of instructions increased. This
is because there are not enough live variables to pass as
callee-saved registers, so the number of load/store instructions
increases unnecessarily. This phenomenon also occurs in con-
ventional RISC architectures. Thus, the increase in the number
of load/store instructions executed by setting the callee-saved
registers is not a problem unique to STRAIGHT.

2) Performance improvement, owing to our proposal:
Fig. 6 shows the extent to our proposed methods improve the
performance. The performance is the inverse of the number of
cycles required for execution. For each benchmark, the case
without optimization was used as the 0% baseline.

In all benchmarks, except for 619.lbm_s, our proposed

0%

20%

40%

60%

80%

100%

120%

140%

160%

RSRSRSRS RSRSRSRS RSRSRSRS RSRSRSRS RSRSRSRS

6f 8f12f16f 6f 8f12f16f 6f 8f12f16f 6f 8f12f16f 6f 8f12f16f

coremark bzip2 lbm_s mcf_s xz_s

Fig. 7. Performance compared to RISC-V’s 6-way. 6f, 8f, 12f, and
16f respectively correspond to parameters 6-way, 8-way, 12-way, and
16-way. ‘R’ and ‘S’ correspond to RISC-V and STRAIGHT, respectively.

optimizations significantly improved the performance. Almost
no performance improvement was observed for 619.lbm_s
because our optimizations hardly reduce the number of in-
structions to be executed. Depending on the benchmark, either
the aggressive-spill optimization or the distance-adjustment
optimization may contribute significantly to the performance.
The two optimizations are independent of each other, not only
in their effect on instruction-count reduction, but also in their
contribution to performance improvement.

The introduction of callee-saved registers improved the
performance of 401.bzip2 and 605.mcf_s, which call
many leaf functions with a small number of instructions to
execute. For 619.lbm_s and 657.xz_s, which call fewer
leaf functions, there is little performance improvement. In
CoreMark, where all the small functions are inline expanded,
the performance is even worse. Our preliminary evaluations
show that CoreMark performs poorly on conventional RISC
architectures because of the setting of the callee-saved regis-
ters; therefore, the performance degradation due to the setting
of callee-saved registers is not unique to STRAIGHT.

3) Compared to RISC: Fig. 7 compares the performance
of binaries compiled with our proposed optimizations and

four callee-saved registers with the performance of binaries
compiled for RISC-V. The values are normalized to those of
RISC-V’s 6-fetch.

In CoreMark and 657.xz_s, the performance of
STRAIGHT is higher than that of RISC-V. In these bench-
marks, STRAIGHT has the advantage of a larger number of
logical registers and faster recovery from branch mispredic-
tion, owing to the shorter front-end latency.

In 619.lbm_s, when the fetch width is small, the per-
formance is lower than that of RISC-V; however, when the
fetch width is sufficient, the performance is equivalent to
that of RISC-V. This is because STRAIGHT requires more
instructions to execute the same program as RISC-V. If there
is sufficient fetch width, and sufficient instructions can be
supplied to the back-end, the performance will be identical,
because the number of floating-point units will be the bottle-
neck.

For 401.bzip2 and 605.mcf_s, the performance of
RISC-V was higher than that of STRAIGHT. The main
computation in these benchmarks is sorting, which involves
many complex control flows with many merges and branches.
Moreover, the execution order constraints are often inconsis-
tent across multiple paths, and the addition of mv instructions
is inevitable, even with the distance-adjustment optimization.
This overhead of increasing the number of instructions is the
cause of the inferior performance, compared to RISC-V.

In the geometric mean of the five benchmarks, our com-
piler achieved the following performance against RISC-V:
86.1% for the 6-fetch model, 91.1% for the 8-fetch
model, 97.0% for the 12-fetch model, and 97.8% for
the 16-fetch model. It is noteworthy that STRAIGHT,
which has an increased number of instructions instead of
register renaming, can achieve almost the same performance
as RISC-V. The performance of STRAIGHT is within 2% of
RISC-V’s performance from evaluation, but it makes the 16-
wide fetch much more feasible.

V. RELATED WORKS

Various approaches have been proposed to reduce the
memory-accesses overhead to save registers on function calls.
Lang and Huguet [22] proposed a method to avoid unneces-
sary spills by adding a hardware mechanism to dynamically
track register usage. Wall [23] and Chow [24] independently
proposed an interprocedural register allocation using call graph
analysis. However, many recent compilers have a fixed set of
callee-saved registers because of the increased hardware cost
and the difficulty of optimizing for indirect calls. The register
allocation to reduce the cost of function calls is described in
detail by Lueh and Gross [25]. Following this approach, we
set a fixed number of callee-saved registers in the STRAIGHT
compiler.

The write-once manner of register usage in STRAIGHT is
similar to that of purely functional languages, so compiler
techniques for these languages can be valuable in STRAIGHT.
The proposed method using extra arguments for introduc-

ing callee-saved registers is similar to the approach in the
continuation-passing style [26].

VI. CONCLUSION

STRAIGHT is an instruction set architecture that uses
inter-instructional distance to specify operands so that false
dependencies do not occur. Because the compiler, not the hard-
ware, resolves false dependencies, the compiler is essential
to achieve high performance. In this paper, we proposed two
important optimizations and a novel calling conventions for
STRAIGHT. The first was distance-adjustment optimization,
which matched the inter-instructional distance in multiple exe-
cution paths by reordering the instruction order. Although the
distance-adjustment optimization required solving the feed-
back edge set problem, it contributed to reducing the number
of mv instructions without increasing the number of other
instructions. The second was the aggressive spill optimization,
which spills loop constants that are not referenced in the loop,
even though the number of logical registers is not insufficient.
While this optimization slightly increases the number of
load/store instructions, it significantly reduces the number of
mv instructions executed. The third is a method of setting
the callee-saved registers suitable for STRAIGHT. Setting the
callee-saved registers can reduce the number of load/store
instructions for benchmarks that frequently call small leaf
functions, although it increases the number of mv instructions
for distance adjustment.

We implemented these optimizations and the method of
setting the callee-saved registers in a STRAIGHT compiler
using LLVM. We also developed a STRAIGHT toolchain to
compile real-world programs. We compiled and evaluated real-
world programs using the compiler. Our optimizations reduced
the number of executed instructions by 18% and improved the
performance by 16% on the average of five benchmarks. In
addition, the introduction of callee-saved registers improved
performance by up to 7% in benchmarks with many leaf func-
tion calls. Performance simulations with exactly the same scale
processor revealed that the performance difference between
STRAIGHT and RISC-V was only approximately 2%, despite
the elimination of register renaming. Our compiler technology,
which enables high-quality STRAIGHT code generation, en-
courages the development of highly scalable processors based
on the STRAIGHT architecture.

APPENDIX

When there is a reference across function calls or loops
in applying the aggressive-spill optimization, it is necessary
to insert a restore instruction. We describe the details of the
procedure to determine where to insert the restore instruction.

If a reference to a value r may cross a function call, it is
necessary to insert a restore instruction. The restore instruction
should be inserted immediately before an instruction referenc-
ing the value r that exists in a region where the value r may
not be in the registers. To find the region, consider whether
the value r may not be in the registers after the instruction
is completed. After completing the producer instruction of

r, the value r is clearly in the registers. After completing a
consumer instruction of r, the value r is also in the registers
because it was referenced as an operand in the STRAIGHT’s
distance form. After completing a function call, the value r is
not in the registers. Elsewhere, if the value r may not be in
the registers after completing an instruction, it may not be in
the register after completing the next instruction. By finding
the least fixed-point set for the above relationship, we can
determine whether there is a possibility that the value r is not
in the register at the location where a particular instruction is
completed.

To describe this formally, we introduce the notation of
modal mu-calculus [27], [28]. To describe the algorithms, we
define the following:

• Ur: Set of all instructions in the living section of r. In
the following, this set is considered as the universal set.

• Producerr: Proposition that this instruction is the pro-
ducer instruction of r.

• Consumerr: Proposition that this instruction is a con-
sumer instruction of r.

• Call: Proposition that this instruction is a function-call
instruction.

The least fixed-point set described above can be written as
the following Ar:

Ar = [[µX.¬Producerr ∧ ¬Consumerr ∧ (Call ∨ ⟨1⟩X)]].

The code obtained by solving this data-flow equation passes
values through registers in any case where the values can be
passed through registers.

When applying aggressive-spill optimization, we can use
the greatest fixed-point set Br, instead of the least fixed-point
set Ar:

Br = [[νX.¬Producerr ∧ ¬Consumerr ∧ (Call ∨ ⟨1⟩X)]].

The code obtained by solving this data-flow equation passes
values through registers, only if the passing path does not
contain loops in which the value is not referenced.

REFERENCES

[1] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke, “IBM
POWER9 processor architecture,” IEEE Micro, vol. 37, no. 2, pp. 40–
51, 2017.

[2] D. Kanter, “Intel’s Sunny Cove sits on an icy lake,” Microprocessor
Report, pp. 1–4, 2019.

[3] D. Suggs and D. Bouvier, “The path to “Zen 2”,”
https://www.slideshare.net/AMD/the-path-to-zen-2, 2019.

[4] L. Gwennap, “Cortex-A77 improves IPC,” Microprocessor Report, pp.
1–4, 2019.

[5] R. Shioya, K. Horio, M. Goshima, and S. Sakai, “Register cache
system not for latency reduction purpose,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture,
2010, pp. 301–312.

[6] R. Shioya and H. Ando, “Energy efficiency improvement of renamed
trace cache through the reduction of dependent path length,” in 2014
IEEE 32nd International Conference on Computer Design, 2014, pp.
416–423.

[7] H. Irie, T. Koizumi, A. Fukuda, S. Akaki, S. Nakae, Y. Bessho,
R. Shioya, T. Notsu, K. Yoda, T. Ishihara, and S. Sakai, “STRAIGHT:
Hazardless processor architecture without register renaming,” in Pro-
ceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, 2018, pp. 121–133.

[8] T. Koizumi, S. Nakae, A. Fukuda, H. Irie, and S. Sakai, “Reduction of
instruction increase overhead by STRAIGHT compiler,” in 2018 Sixth
International Symposium on Computing and Networking Workshops
(CANDARW), 2018, pp. 92–98.

[9] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004, pp. 75–86.

[10] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value
numbers and redundant computations,” in Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1988, pp. 12–27.

[11] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of
variables in programs,” in Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 1988,
pp. 1–11.

[12] “CoreMark,” https://www.eembc.org/coremark/.
[13] “Standard performance evaluation corporation cpu2006 benchmark

suite,” http://www.spec.org/cpu2006/.
[14] “Standard performance evaluation corporation cpu2017 benchmark

suite,” http://www.spec.org/cpu2017/.
[15] “musl libc,” https://musl.libc.org.
[16] A. Seznec and P. Michaud, “A case for (partially) tagged geometric his-

tory length branch prediction,” Journal of Instruction-Level Parallelism,
vol. 8, no. 2, pp. 1–23, 2006.

[17] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in 25th Annual International Symposium on Computer
Architecture, 1998, pp. 142–153.

[18] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, 2007, pp. 63–74.

[19] “RISC-V: The free and open risc instruction set architecture,”
https://riscv.org/.

[20] “Processor simulator onikiri 2,” https://github.com/onikiri/onikiri2.
[21] A. Jani, “Apple ships its first PC processor,” Microprocessor Report, pp.

1–5, 2021.
[22] T. Lang and M. Huguet, “Reduced register saving/restoring in single-

window register files,” ACM SIGARCH Computer Architecture News,
vol. 14, no. 3, pp. 17–26, 1986.

[23] D. W. Wall, “Global register allocation at link time,” ACM SIGPLAN
Notices, vol. 21, no. 7, pp. 264–275, 1986.

[24] F. C. Chow, “Minimizing register usage penalty at procedure calls,” in
Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, 1988, pp. 85–94.

[25] G.-Y. Lueh and T. Gross, “Call-cost directed register allocation,” ACM
SIGPLAN Notices, vol. 32, no. 5, pp. 296–307, 1997.

[26] A. W. Appel and Z. Shao, “Callee-save registers in continuation-passing
style,” LISP and Symbolic Computation, vol. 5, pp. 191–221, 1992.

[27] D. Kozen, “Results on the propositional mu-calculus,” Theoretical
Computer Science, vol. 27, no. 3, pp. 333–354, 1983.

[28] B. Steffen, “Data flow analysis as model checking,” in International
Symposium on Theoretical Aspects of Computer Software, 1991, pp.
346–364.

