
T-SKID: Predicting When to Prefetch Separately
from Address Prediction

Toru Koizumi, Tomoki Nakamura, Yuya Degawa, Hidetsugu Irie, Shuichi Sakai, Ryota Shioya
Graduate School of Information Science and Technology, The University of Tokyo Tokyo, Japan

Email: {koizumi, tomokin, degawa, irie, sakai}@mtl.t.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

Abstract—Prefetching is an important technique for reducing
the number of cache misses and improving processor perfor-
mance, and thus various prefetchers have been proposed. Many
prefetchers are focused on issuing prefetches sufficiently earlier
than demand accesses to hide miss latency. In contrast, we propose
a T-SKID prefetcher, which focuses on delaying prefetching. If a
prefetcher issues prefetches for demand accesses too early, the
prefetched line will be evicted before it is referenced. We found
that existing prefetchers often issue such too-early prefetches, and
this observation offers new opportunities to improve performance.
To tackle this issue, T-SKID performs timing prediction indepen-
dently of address prediction. In addition to issuing prefetches
sufficiently early as existing prefetchers do, T-SKID can delay
the issue of prefetches until an appropriate time if necessary. We
evaluated T-SKID by simulations using SPEC CPU 2017. The
result shows that T-SKID achieves a 5.6% performance improve-
ment for multi-core environment, compared to Instruction Pointer
Classifier based Prefetching, which is a state-of-the-art prefetcher.

I. INTRODUCTION

Data prefetching is a key technique for hiding memory
access latency, which is a typical execution bottleneck for
many applications. Various prefetching methods have been
studied, ranging from those that predict simple memory access
patterns [4], [10], [11], [15], such as stream and stride accesses,
to those that predict complex memory access patterns [5], [12],
[14], [20], [21] using a series of address deltas or combining
access history and PC.

For prefetchers, it is essential not only to predict addresses
but also to issue prefetches early enough. Even if the address
prediction is correct, issuing a prefetch too late for a demand
access does not effectively hide the latency and loses the
opportunity for performance improvement. Many prefetchers
focus on issuing prefetches early enough for demand access.
Such prefetchers typically predict accesses as far in the future
as possible, within sufficiently high confidence in the address
prediction [11], [12], [15], [18], [20]. Best-Offset Prefetcher
(BOP) [13] embeds timing prediction in the address prediction,
and it determines a prefetch address considering whether the
prefetch is in time for a demand access.

Whereas existing prefetchers focus on issuing prefetches
early enough, we focus on delaying prefetches. If a prefetcher
issues a prefetch too early for a demand access, the prefetched
line is replaced before it is referenced. In such a case,
appropriately delaying the issue of the prefetch can improve
the performance.

A particular but frequent example of the above case is
re-referencing the same line after a long enough time has

passed that the line is replaced from the cache. We call this
kind of re-reference a zero-stride pattern. For example, if we
set the stride to zero in a stride prefetcher (that is, if it
generates the same address as the first access), the address of
the second access is correctly predicted. However, prefetching
the same address simultaneously as the first access obviously is
meaningless. Instead, by delaying prefetching until the line has
been replaced and then re-referenced, it can enable effective
prefetching and improve performance.

We found that existing prediction mechanisms often issue
too-early prefetches, and this observation offers new opportu-
nities to improve performance by delaying prefetches. Based
on this observation, we propose T-SKID, a prefetcher that can
delay prefetching in addition to prefetching enough early as
in the existing prefetchers. T-SKID predicts the appropriate
timing for prefetching independently of the address prediction.
It predicts the timing using the temporal correlation of the PCs
of load instructions. On a cache miss, it does not immediately
issue a prefetch using a predicted address, but it delays issuing
the prefetch until the predicted time when the prefetch should
be issued. This allows T-SKID to issue effective prefetches in
cases that are difficult to predict with existing prefetchers, (i.e.,
when the insertion is too early and the line is replaced before
the demand access including the zero-stride patterns).

The contributions of this paper are as follows.

• We found that the existing prefetchers often issue too-early
prefetches, and we show that delaying prefetches offers
new opportunities to improve performance.

• We propose T-SKID, which predicts prefetch addresses
and timing separately. We introduce a novel correlation for
data prefetchers, which is based on the repeatability of the
order and timing of PCs. We propose a timing prediction
mechanism that leverages this correlation.

• In addition to issuing prefetches sufficiently early as the
existing prefetchers do, T-SKID can delay the prefetch
issue until an appropriate time if necessary. T-SKID can
also issue effective prefetches for the zero-stride pattern,
which is a re-reference pattern that cannot be handled by
the existing prefetchers.

• We evaluated T-SKID by detailed simulation with the same
configuration used in the 3rd Data Prefetching Champi-
onship (DPC3) [1]. The evaluation results show that T-
SKID achieves a performance improvement of 46.0% and
26.2% for single-core and multi-core, respectively, com-
pared to a processor without prefetching. Compared to In-

(b) T-SKID

5) miss on X+4@PC_A3) inserted X+41) miss on X@PC_A

(a) Too-early prefetch (PC-based stride prefetcher)

4) evicted X+4

1) miss on X@PC_A
record X target PC

2) prefetch X+4

2) prefetch X+4@PC_B
issue X+4 trigger PC

delay issuing prefetch

3) hit on X+4@PC_A
target PC

time

time

Fig. 1: Too-early prefetch and T-SKID
time (accesses)

ad
dr

es
s

stride accesses with
2000 accesses in
between

page boundary

21 lines
1) 5)

(a) (b) (c)

Fig. 2: Memory access pattern of 607.cactuBSSN s-2421B.
(a) Visualized access pattern. The white arrows represent stride
accesses. There are thousands of stride accesses in the figure.
(b) Zoomed image. The left and right access series are stride ac-
cesses. (c) More zoomed image. These accesses are very sparse.

struction Pointer Classifier based Prefetching (IPCP) [14],
which is state-of-the-art and the DPC3’s champion, T-
SKID achieves a performance improvement of 1.5% and
5.6% for single-core and multi-core, respectively.

II. MOTIVATION

Even if an address prediction is correct, a line inserted by
issuing a prefetch too early for a demand access will be evicted
before it is referenced, resulting in a miss. An example of such
a miss is shown in Figure 1(a), in which a PC-based stride
prefetcher is used as a prefetcher. In the figure, (1) a miss
occurs at address X, (2) so the stride prefetcher issues a prefetch
for address X+4 based on the stride (four) learned in advance.
(3) After the prefetched line is inserted, (4) the line is evicted
because too many instructions have been executed before it is
referenced. (5) As a result, access to address X+4 results in a
demand miss, even though it was prefetched. We refer to such
misses as misses prefetched too-early.

We show a practical example of such an access pattern
in Figure 2, which visualizes memory accesses in 607.cac-
tuBSSN s-2421B of SPEC CPU 2017 [3]. In this figure,
the vertical axis represents address space, the horizontal axis
represents access time, and each plotted point represents a
memory access. In Figure 2, time moves from the left to the
right, and the arrows in (a) represent stride accesses. In the
zoomed image (b), 1) and 5) represent stride accesses that are
separated in time, corresponding to 1) and 5) in Figure 1(a).
These 1) and 5) are the same PC-based stride access sequence,
and a PC-based stride prefetcher can easily predict their
addresses. However, between 1) and 5), approximately 2000
lines are accessed, which is much larger than the size of the
L1 cache (512 lines). Consequently, the prefetched line will be
evicted until 5). Note that spatial correlation-based prefetchers
(i.e., spatial memory streaming (SMS) [21] and Bingo [5])

cannot even predict the addresses of the lines accessed in the
figure. This is because the number of addresses accessed in a
page is very small, as shown in Figure 2(c), and the access
pattern shown vertically in the figure is irregular.

We found that the existing prefetchers often issue too-early
prefetches and that delaying prefetches offers new opportunities
to improve performance significantly. Using traces generated
from SPEC CPU 2017 and distributed in DPC3, we investigate
how many existing prefetchers generate misses prefetched
too-early in the L1 cache. In this investigation, we used multi
lookahead offset prefetching (MLOP) [18] and IPCP [14],
which are the state-of-the-art prefetchers and awarded in DPC3.
As a result, out of the 46 traces, 7 (MLOP) or 12 (IPCP)
traces had more than one misses prefetched too-early per 1K
instructions, and 3 (MLOP) or 4 (IPCP) traces had more than
five. In particular, the maximum number of misses prefetched
too-early per 1K instructions was 20.7 with MLOP and 16.0
with IPCP. These results show that appropriately delaying
prefetches offers new opportunities to improve performance.

III. T-SKID

A. Overview

As explained in Section II, the key to improving performance
is to delay issuing prefetches appropriately. We propose T-SKID
to realize such prefetch timing adjustment.

In addition to address prediction, T-SKID predicts prefetch
timing and performs both the prediction independently. For the
address prediction, T-SKID uses a PC-based stride predictor.
For the timing prediction, T-SKID exploits the repeatability of
the order and timing of PCs.

Figure 1(b) shows an overview of T-SKID mechanism. In
this figure, addresses X and X+4 are accessed in the same
way as in Figure 1(a). In Figure 1(a), the miss occurred due
to the prefetch being issued too early, as mentioned earlier. In
contrast, T-SKID delays issuing the prefetch until the access
of the load by PC B in (2) in Figure 1(b). As a result, the
prefetched line is not evicted, and the access of PC A in (3)
results in a cache hit.

Unlike existing PC-based prefetchers, the PC of a load
instruction (e.g., PC B) that determines when to issue the
prefetch can be different from a PC (e.g., PC A) used for
address prediction. The PC used for the address prediction (e.g.,
PC A) is called a target PC. The PC of a load instruction
that determines the timing of issuing (e.g., PC B) is called a
trigger PC. T-SKID learns trigger PCs that achieve appropriate
issue timing for corresponding target PCs. This timing learning
allows T-SKID to prefetch with appropriate timing.

In the following, we describe the implementation that realizes
the behavior of T-SKID. First, we describe the structure of
T-SKID, and then we explain the details of learning and
prediction.

B. Structure

T-SKID has the following four components, as shown in
Figure 3. The following two tables are used for the address
and timing prediction, respectively:

Target Table
PC (as Trigger)

Target
PC

Filter &Record
Prefetch Access

(a) Issue Prefetch

Addr. Pred. Table

IPT
Prefetch Addrs

Issue

PC (as Trigger)

(d) Learning Timing @Cache Access

PC_A (as Target)

PC_B (as Trigger)

(b) Learning Address Pattern @Cache Access

PC_A (as Target)

Cache Access Addr.

(c) Learning Timing @Prefetch Fill

RRPCQ

PC_B (as Trigger)

Prefetch Fill Addr.

Target Table

Addr. Pred. Table

IPT IPT

Target Table

Addr. Pred. Table

Target Table

Addr. Pred. Table

IPT

RRPCQ

Fig. 3: Issuing Prefetch and Learning Timing/Address Patterns in T-SKID

1. Address prediction table: This table records information
(e.g., stride, last_addr, and degree) needed for the
PC-based stride prediction.
2. Target table: This table records target PCs associated with
trigger PCs.

The next two components are for monitoring cache fill and
learning in the target table.
3. Inflight prefetch table (IPT): This table tracks issued
prefetches that have not yet been filled into the cache. Each
entry of this table has a PC that triggered a prefetch and its
prefetch address.
4. Recent request PC queue (RRPCQ): This queue records
PCs that triggered a prefetch recently filled into the cache.

C. Issuing prefetches

An overview of issuing prefetch is shown in Figure 3(a).
T-SKID issues prefetch in the following steps.

1) For each memory access, the PC of the access is treated
as a trigger PC, and the target table is searched with the
trigger PC for timing prediction. If the trigger PC hits in
the target table, a target PC is obtained and then it goes
to step 2 to predict addresses.

2) The address prediction table is searched with the ob-
tained target PC. If the target PC hits in the address
prediction table, T-SKID predicts addresses and issue
prefetches using the obtained information. Specifically,
the prefetch addresses are calculated by last addr +
stride× {1, 2, . . . , degree}.

3) For each issued prefetch, the trigger PC and the prefetch
address are tied together and recorded in the IPT. This
information is used for timing learning, which will be
explained later.

D. Address learning

T-SKID performs prediction and learning based on existing
PC-based stride prefetchers [10], [14]. As mentioned above,
a last_addr and stride for each target PC are recorded
in the address prediction table. As shown in Figure 3(b), for
each memory access of an instruction with PC A, the address
prediction table is searched with PC A, and the last_addr
and stride in the corresponding entry are updated. Note
that a prefetch degree is updated independently by the timing
learning as described below. In addition, to handle stream

access patterns by multiple PCs, the number of recent accesses
within a certain range from last_addr is counted, and if the
number exceeds a threshold, stride is set to the line size.

Unlike the existing PC-based stride prefetchers, T-SKID
learns any stride values as a valid stride, even if it is zero.
Although it does not make sense for existing prefetchers to
issue a prefetch when a stride is zero, T-SKID delays issuing
the prefetch and thus can issue effective prefetches in the
zero-stride pattern, which is a long-term re-reference described
in Section I.

E. Timing learning
T-SKID learns the latency required for prefetching and issues

the prefetch at the appropriate time. This latency is specifically
the time between issuing a prefetch and its completion. T-SKID
integrates this latency into the form of the relationship between
the trigger PC and the target PC, rather than a specific number
of cycles. Specifically, T-SKID learns that relationship so that
a prefetch triggered by the trigger PC is in time for an access
by the target PC.

We describe the behavior of this timing learning below.
1) As mentioned above, when a prefetch is issued, a trigger

PC and a prefetch address are tied together and recorded
in the IPT.

2) Recording trigger PCs: When the prefetched line is
inserted into the cache, T-SKID searches the IPT with
the address of the line to obtain the corresponding
trigger PC, as shown in Figure 3(c). The obtained trigger
PC (PC B) is recorded in the RRPCQ. This process
makes the RRPCQ contain PCs that triggered prefetches
recently filled into the cache. These recorded PCs have
the following property: If these PCs triggered a prefetch,
the insertion of the prefetched line into the cache would
have already been completed. Thus, the PCs recorded in
the RRPCQ are good candidates for trigger PCs.

3) Linking a target PC to trigger PCs: As shown in Fig-
ure 3(d), when a memory access is performed by the
instruction with PC A, all the trigger PCs in the RRPCQ
are read. For example, two trigger PCs are obtained in our
evaluation because the number of entries in the RRPCQ
is two. Using the obtained trigger PCs as indices, PC A
is written to each corresponding entry in the target table.
Through this process, a target PC is linked to trigger PCs.

TimePC_A
(1)Cache Access &

Issue Prefetch

IPT
(2 entries)

RRPCQ
(2 entries)

(2)Prefetch Fill
Completed

PC_B

PC_B

PC_B

(3)Cache Miss on
addr. X

T-SKID learns
Trigger: PC_B
Target: PC_A

PC_B -> PC_ATarget Table
(2 entries)

PC_A

Fig. 4: Timeline of Learning Timing

In the following, we show an example of the above behavior
using a timeline shown in Figure 4. The numbers (1)–(3) below
correspond to the steps in (1)–(3) above, respectively.

1) When a load instruction with PC B issues a prefetch, an
IPT entry is allocated and PC B is written to there.

2) When the prefetch fill triggered by PC B is completed,
PC B is read from the corresponding entry in the IPT
and is written in the RRPCQ.

3) When a load instruction with PC A causes a miss on
address X, PC B is obtained from RRPCQ and PC A is
written in the target-table entry corresponding to PC B.

As a result of this procedure, when the target table is
referenced by using PC B as a trigger PC, PC A is obtained as
a target PC. The above mechanism realizes the behavior shown
in Figure 1 (b), where the prefetch for the target PC, PC A, is
appropriately delayed until an access with PC B.

As a result of the above learning, in some cases, the trigger
PC and the target PC may be the same PC. This means that
accesses by the same PC form a short-interval stride-access
pattern. In such a case, the above mechanism immediately
issues prefetches, like the existing stride prefetchers.

To detect whether a prefetch needs to be issued even earlier,
T-SKID learns the degree dynamically by using IPT. Each entry
in the IPT monitors cache accesses by load instructions with a
PC recorded in the entry. It counts the number of lines accessed
by such instruction from issuing corresponding prefetch until
completion of the prefetched-line fill. For example, if a line
size is 64B and addresses 64, 128, and 192 are accessed before
a prefetch by PC A is filled, the counter is set to 3. When the
fill is completed, the value of the counter is read and stored
as degree in the address prediction table. This allows issuing
distant prefetches when the interval between accesses is short.

IV. EVALUATION

A. Methodology

We evaluated T-SKID using ChampSim [2]. ChampSim is
a trace-based out-of-order CPU simulator that can simulate
detailed memory systems. Table I shows the parameters used

TABLE I: Simulation Parameters

Core parameters 1 or 4 cores, 5.0 GHz, 192-entry ROB, 3 ALUs, 2 Loads, 1 Store
Private L1D cache 32 KiB, 8-way, 4 cycle, 2 line/cycle, 8 MSHRs, LRU
Private L2 cache 256 KiB, 8-way, 8 cycle, 1 line/cycle, 16 MSHRs, LRU

Shared L3 cache (LLC) 2 MiB/core, 16-way, 20 cycle, 1 line/cycle, 32 MSHRs/core, LRU

DRAM
4 GiB 1-channel (single core) or 8 GiB 2-channels (multi-core)

1/24 line/cycle/channel, 48 shared WQs, 48 shared RQs

in our evaluation. Two configurations were used: single-core
and multi-core. In the simulation, a 4 KiB page was used. In
ChampSim, virtual addresses are randomly mapped to physical
addresses. These configurations are the same as those in
DPC3 [1].

1) Workload: We used SPEC CPU 2017 [3] traces as a
benchmark according to the configuration of DPC3. To analyze
the performance improvement by prefetching, we used 46
simpoint [19] traces with LLC MPKI of 1.0 or higher without
prefetchers. All results were obtained from a simulation of
200M instructions after a warm-up of 50M instructions.

In addition to single-core simulations, we did multi-core
simulations to measure how much interactions between cores
affect performance when LLC and main memory are shared
by multiple cores. For the multi-core simulations, we made 46
mixed-trace workloads. Each mixed-trace workload consists of
four different traces chosen randomly from the traces that were
used in the single-core simulations. To avoid bias in the trace
selection, all the traces appear the same number of times (i.e.,
four times) out of 46 mixed-trace workloads.

In the multi-core simulations, we assigned one different
trace to each core. First, a warm-up was performed until the
last core finished executing 50M instructions. Then, simulation
was performed until the last core finished executing 200M
instructions. For each trace, only the first 200M-instructions
simulation was considered for measuring IPC, and speedup was
calculated by comparison to no-prefetch baseline. The speedup
of a prefetcher is calculated as the geometric mean of the
speedup of each core.

2) Evaluated prefetchers: To evaluate the performance of
T-SKID, we used the following state-of-the-art prefetchers:
IPCP [14], SPP with PPF [6], MLOP [18], and Bingo [5]. In
DPC3, IPCP and SPP with PPF achieved the first and second
scores in single-core performance, and MLOP and Bingo
achieved the first and second scores in multi-core performance.
In the simulation, we used the source code of these prefetchers
uploaded on the DPC3 website.

We configured T-SKID that consumes 24.75 KiB storage.
It consumes 12.12 KiB for a 1024-entry target table (8-way
set associative), 9.50 KiB for a 1024-entry address prediction
table (8-way set associative), and 3.13 KiB for other metadata
including a 16-entry IPT and a 2-entry RRPCQ. T-SKID was
connected only to the L1D cache, and no other prefetchers were
connected to the other caches.

B. Result

1) Performance improvement: Figure 5 shows the single-
core and multi-core performance improvement of the evaluated
models over the no-prefetching baseline. In this evaluation,
we also evaluated the following prefetchers that participated
in DPC3: Sangam [7], Berti [17], and Pangloss [16]. T-SKID
showed the highest performance among other existing prefetch-
ers both in the single-core and multi-core configurations.

Some prefetchers achieved performance improvements close
to that of T-SKID only in the single-core or multi-core
configuration, but not in both. In the multi-core configuration,
T-SKID achieved a 5.6% speedup over IPCP, which had the

1.17

1.19

1.21

1.23

1.25

1.27

1.38 1.4 1.42 1.44 1.46 1.48

IP
C

 S
p

ee
d

u
p

 (
M

u
lt

i-
co

re
)

IPC Speedup (Single-core)

5.6%
speedup

5.1% speedup

Bingo
(62.4 KiB)
(1st in multi-core)

MLOP

Pangloss
Sangam

SPP with PPF
Berti

T-SKID
(24.8 KiB)

T-SKID
(4.4 KiB)

1.5%
speedup

IPCP
(16.4 KiB)
(1st in single-core)

1.7% speedup

Fig. 5: IPC speedup of T-SKID in single/multi configurations

IP
C

 R
at

io
 O

ve
r

N
o

-p
re

fe
tc

h
(l

o
g

sc
al

e)

Workloads sorted by speedup of T-SKID

T-SKID
IPCP
SPP with PPF
MLOP
Bingo

1.0

2.0

3.0

4.0

0.8

mcf_s-472B

cactu.-3477B

mcf_s-1554B

cactu.-2421Blbm_s-2677B

roms_s-1390B

Fig. 6: IPC speedup in single-core configuration

highest single-core performance among existing prefetchers.
Even if the storage budget of T-SKID is 4.4 KiB, T-SKID
still achieved a 4.9% speedup over IPCP. In single-core
configuration, T-SKID achieved a 5.1% speedup over Bingo,
which had the highest multi-core performance among existing
prefetchers. These results show that T-SKID is adaptable to a
variety of environments.

2) Single-core performance analysis: Figure 6 shows the
IPC speedup of the evaluated prefetchers over a no-prefetching
baseline in the single-core configuration. The workloads have
been sorted in increasing order of T-SKID’s speedup. T-SKID
showed the highest performance improvement or almost the
highest performance improvement in almost all traces. In partic-
ular, in 607.cactuBSSN s and 605.mcf s, T-SKID achieved
a significant performance improvement over existing prefetch-
ers because it can delay issuing prefetchers until the appropriate
timing. In 607.cactuBSSN s-2421B, T-SKID achieved a
44.4% improvement, which is a 23.4% speedup over IPCP.

3) Multi-core performance analysis: Figure 7 shows the
speedup of the evaluated prefetchers over the no-prefetching
baseline. The workloads have been sorted in increasing order
of the speedup. The left end of Figure 7 shows that the
performance of IPCP and MLOP was significantly lower than
the no-prefetching baseline. The performance of SPP with PPF
was also lower than that of the no-prefetching baseline. On
the other hand, T-SKID improved the performance by 3.8%
for this workload. Additionally, T-SKID greatly improved the
performance compared to the other prefetchers near the center
of the figure. These results show that T-SKID’s timing learning

IP
C

Ra
tio

 O
ve

r N
o-

pr
ef

et
ch

(lo
g

sc
al

e)

Workloads sorted by speedup

T-SKID
Bingo
MLOP
IPCP
SPP with PPF

1.0

1.2

1.4

0.8

0.6

1.6

Fig. 7: IPC speedup in multi-core configuration

0

0.2

0.4

0.6

0.8

1

C
o

ve
ra

ge

Workloads sorted by coverage

T-SKID
Bingo
MLOP
IPCP
SPP with PPF

Fig. 8: Coverage in single-core configuration

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Workloads sorted by accuracy

T-SKID
Bingo
MLOP
IPCP
SPP with PPF

Fig. 9: Accuracy in single-core configuration

is robust and can adapt to many environments. When multiple
programs are running at the same time, the interaction between
them can significantly change the prefetch latency from that
of running a single program. T-SKID’s timing learning method
covers a wide range of such cases.

4) Prefetching coverage and accuracy: Figures 8 and 9
show the coverage and accuracy of the evaluated prefetchers,
respectively. The workloads have been sorted in increasing
order of the accuracy or the coverage. This result shows that
T-SKID greatly improved the coverage without much reduction
in the accuracy. The high coverage of T-SKID is largely due
to the timing learning. The left sides of Figures 8 and 9 show
that T-SKID simultaneously improved coverage and accuracy
for memory-access patterns that are difficult to prefetch with
existing prefetchers.

5) Storage sensitivity: Figure 10 shows the change of
single-core IPC speedup varying the storage budgets for the
evaluated prefetchers. T-SKID showed the highest performance
improvement in every range of capacities shown in the figure.

T-SKID and existing PC-based prefetchers, including IPCP,
both perform PC-based stride prediction; thus they can learn
many stride patterns as storage capacity is increased so that
many PCs can be learned. However, as shown in Figure 10, the
performance improvement of IPCP is quickly saturated when
the storage capacity is increased. This is because the number of

1.37

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

1.46

1.47

4 8 16 32 64 128 256

IP
C

 S
p

ee
d

 U
p

 (
si

n
gl

e
co

re
, g

eo
m

ea
n

)

Storage Overhead (KiB)

Bingo MLOP

SPP with PPF IPCP

T-SKID, 8-way T-SKID, Direct Map

Bingo
62.34 KiB, 1.390

MLOP
10.79 KiB, 1.404

SPP with PPF
49.94 KiB, 1.423

IPCP
PC: 1024 entries
16.38 KiB, 1.438

T-SKID
PC: 128 entries
4.36 KiB, 1.447

T-SKID
PC: 1024 entries
24.75 KiB, 1.460

Fig. 10: Storage Sensitivity. The storage consumption of each
model used in the other evaluations is also shown.

PCs that cause the normal stride access pattern is not large. On
the contrary, T-SKID can handle the zero-stride access patterns
in addition to the normal stride access patterns. T-SKID can
further improve the performance by using budgets to learn a
new class of access patterns, the zero-stride patterns.

We also evaluated T-SKID with a simple direct-mapped
table configuration as well as the 8-way set-associative con-
figuration used in the previous evaluations. T-SKID with the
direct-mapped tables still showed the highest performance
improvement in every range of capacities, even though it has a
slight reduction in performance improvement due to conflict.

V. RELATED WORK

Various prefetching methods have been proposed. They are
focused on issuing prefetches early enough and cannot delay is-
suing as follows. (1) To determine how early to issue prefetches,
stream-based prefetchers typically have two parameters, degree
and distance. The degree represents how many consecutive lines
are prefetched at a time, while the distance represents how far
ahead of the current line is prefetched. These parameters are
statically determined in IPCP [14] and several works [11], [15],
[23]. Some other works dynamically change these parameters
to avoid issuing useless prefetches [8], [9], [22]. (2) VLDP [20],
SPP [12], and an IP complex stride prefetcher included in
IPCP focus on delta between accessed addresses. By recursively
predicting delta sequences, they prefetch several accesses ahead
and thus improve the possibility of issuing prefetches in time
for demand accesses. (3) BOP [13] learns the single best offset
to prevent issuing prefetches too late. MLOP [18] determines
multiple offsets considering the order of accesses, and it
attempts to issue more valuable prefetches than BOP.

VI. CONCLUSION

We found that existing prefetchers often issue too-early
prefetches, and this observation provides new opportunities to
improve performance. To tackle the issue of the too-early pre-
fetch, we proposed T-SKID, which predicts prefetch addresses
and timing separately and delays issuing prefetch accesses until
appropriate times. We evaluated T-SKID through simulations

with SPEC CPU 2017. As a result, T-SKID achieved a 46.0%
performance improvement for single-core and 26.2% perfor-
mance improvement for multi-core compared to a processor
without prefetching.

ACKNOWLEDGEMENTS

This work was partially supported by JSPS KAK-
ENHI Grant Numbers JP19H04077, JP20H04153, JP20J22752,
JP21J11687.

REFERENCES

[1] “The 3rd data prefetching championship,”
https://dpc3.compas.cs.stonybrook.edu/.

[2] “ChampSim,” https://github.com/ChampSim/ChampSim/.
[3] “Standard performance evaluation corporation CPU2017 benchmark

suite,” http://www.spec.org/cpu2017/.
[4] J. Baer and T. Chen, “An effective on-chip preloading scheme to reduce

data access penalty,” in ACM/IEEE Int. Conf. on Supercomputing (SC),
1991, pp. 176–186.

[5] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Accurately and maximally prefetching spatial data access patterns
with Bingo,” in The 3rd Data Prefetching Championship, 2019.

[6] E. Bhatia, G. Chacon, E. Teran, D. A. Jiménez, and P. Gratz, “Enhancing
signature path prefetching with perceptron prefetch filtering,” in The 3rd
Data Prefetching Championship, 2019.

[7] M. Chaudhuri and N. Deshmukh, “Sangam: A multi-component core
cache prefetcher,” in The 3rd Data Prefetching Championship, 2019.

[8] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching sys-
tems,” in IEEE Int. Symp. on High-Performance Computer Architecture
(HPCA), 2009, pp. 7–17.

[9] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated control
of multiple prefetchers in multi-core systems,” in IEEE/ACM Int. Symp.
on Microarchitecture (MICRO), 2009, pp. 316–326.

[10] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching
in scalar processors,” in IEEE/ACM Int. Symp. on Microarchitecture
(MICRO), 1992, pp. 102–110.

[11] N. P. Jouppi, “Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers,” in ACM/IEEE
Int. Symp. on Computer Architecture (ISCA), 1990, pp. 364–373.

[12] J. Kim et al., “Path confidence based lookahead prefetching,” in
IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2016, pp. 1–12.

[13] P. Michaud, “Best-offset hardware prefetching,” in IEEE Int. Symp. on
High-Performance Computer Architecture (HPCA), 2016, pp. 469–480.

[14] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction
pointer classifier based hardware prefetching,” in The 3rd Data Prefetch-
ing Championship, 2019.

[15] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a secondary
cache replacement,” in ACM/IEEE Int. Symp. on Computer Architecture
(ISCA), 1994, pp. 24–33.

[16] P. Papaphilippou, P. H. J. Kelly, and W. Luk, “Pangloss: a novel Markov
chain prefetcher,” in The 3rd Data Prefetching Championship, 2019.

[17] A. Ros, “Berti: A per-page best-request-time delta prefetcher,” in The 3rd
Data Prefetching Championship, 2019.

[18] M. Shakerinava, M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Multi-lookahead offset prefetching,” in The 3rd Data Prefetching
Championship, 2019.

[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ACM SIGPLAN Notices,
vol. 37, no. 10, pp. 45–57, 2002.

[20] M. Shevgoor et al., “Efficiently prefetching complex address patterns,” in
IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2015, pp. 141–152.

[21] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” in ACM/IEEE Int. Symp. on Computer
Architecture (ISCA), 2006, pp. 252–263.

[22] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in IEEE Int. Symp. on High-Performance Com-
puter Architecture (HPCA), 2007, pp. 63–74.

[23] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy,
“POWER4 system microarchitecture,” IBM Journal of Research and
Development, vol. 46, no. 1, pp. 5–25, 2002.

