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Abstract—The single-thread performance of a processor im-
proves the capability of the entire system by reducing the critical
path latency of programs. Typically, conventional superscalar
processors improve this performance by introducing out-of-
order (0O00) execution with register renaming. However, it is
also known to increase the complexity and affect the power
efficiency. This paper realizes a novel computer architecture
called “STRAIGHT” to resolve this dilemma. The key feature
is a unique instruction format in which the source operand
is given based on the distance from the producer instruction.
By leveraging this format, register renaming is completely
removed from the pipeline. This paper presents the practical
Instruction Set Architecture (ISA) design, the novel efficient
000 microarchitecture, and the compilation algorithm for the
STRAIGHT machine code. Because the ISA has sequential
execution semantics, as in general CPUs, and is provided with
a compiler, programming for the architecture is as easy as
that of conventional CPUs. A compiler, an assembler, a linker,
and a cycle-accurate simulator are developed to measure the
performance. Moreover, an RTL description of STRAIGHT is
developed to estimate the power reduction. The evaluation using
standard benchmarks shows that the performance of STRAIGHT
is 18.8 % better than the conventional superscalar processor of the
same issue-width and instruction window size. This improvement
is achieved by STRAIGHT’s rapid miss-recovery. Compilation
technology for resolving the possible overhead of the ISA is also
revealed. The RTL power analysis shows that the architecture
reduces the power consumption by removing the power for
renaming. The revealed performance and efficiencies support that
STRAIGHT is a novel viable alternative for designing general
purpose OoO processors.

Index Terms—microprocessor, instruction-level-parallelism,
out-of-order execution, register renaming, computer architecture,
compiler, power efficiency

I. INTRODUCTION

In response to the trends in semiconductor technology,
processor architecture has been continually evolving to achieve
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higher performance, more functions, and higher power effi-
ciency. Currently, for the wide range of purpose from embed-
ded processors to server processors, the heterogeneous multi-
core architecture [1] is adopted, which typically implements
various types and various scales of cores into a chip; the most
efficient cores among them are in charge for each application
depending on its characteristics. This strategy trades off energy
efficiency against lower-utilized cores, reflecting the recent
dilemma that even though the number of transistors can be
increased, they cannot be switched simultaneously [2]. In
this scenario, the CPU is expected to effectively execute the
programs that are not parallelized or cannot be parallelized
by the programmer. Because they are often critical paths that
require the longest execution time among the ongoing tasks,
speeding up a single-thread execution is essential to improve
the total system performance.

Currently, a big superscalar core is inevitably accepted
as the most powerful and the only feasible architecture to
gain this performance. Provided with an out-of-order (O0O)
mechanism and a number of predictors, the sophisticated
superscalar core can exploit the underlying instruction-level
parallelism (ILP) in a thread relatively well. However, a further
increase in its performance is challenging because the power
of indirect operation increases with the scale of the core, which
is critical in today’s limited power budgets. Therefore, the
recent improvement in single-thread performance is relatively
modest compared to those of GPUs and TLP technologies,
which demonstrate a performance increase that is proportional
to the increase in the number of transistors employed [3] [4].

This paper realizes a novel OoO execution architecture that
reduces the amount of indirect operations per instruction. The
key idea is that the unique instruction set architecture (ISA)
is adopted to skip register renaming. The ISA guarantees
that each logical register will be written only once and then
discarded in a fixed period. As the paper elaborates later,
this rule renders register renaming unnecessary, thus resulting
in a simple OoO execution structure as well as a scalable
instruction window for exploiting much larger ILP with simple



hardware. The architecture is called “STRAIGHT” because
it executes each instruction directly without renaming its
operands. The architecture actually requires the ISA to be
changed; however, the code is easily translated from the static-
single-assignment (SSA) form [5] [6] intermediate language,
which is recently dominant for compiler infrastructures such
that the viability is not compromised.

A cycle-accurate simulation environment and a register-
transfer level (RTL) description of STRAIGHT are developed
to the evaluation. Also, those environment of OoO RISC-V
are developed as a superscalar counterpart. The evaluation
result demonstrates that STRAIGHT improves the single-
thread performance and reduces the power consumption, both
of which are derived from the simpler hardware organization
that is enabled by the ISA.

The concept of the ISA to eliminate register renaming
is presented herein [7]; however, the method to realize the
microarchitecture and the compiler of the architecture that can
execute any kind of general-purpose programs has not been
revealed. By presenting the essential hardware and software
technologies, the contribution of this paper are as follows:

o The practical STRAIGHT ISA is built to write application
programs. The ISA feature is that the source operands are
given by the distance from the producer instruction.

e The microarchitecture that receives STRAIGHT ISA is
realized. We show that this approach completely removes
register renaming from the OoO core. This means that
the major hotspots and critical paths are eliminated from
the front-end pipeline. Furthermore, the simplified archi-
tecture achieves the rapid miss-recovery as well as the
further reorder buffer (ROB) scalability.

e The compilation algorithm that generates STRAIGHT
machine code from the LLVM [8] intermediate repre-
sentation (IR) is developed. Padding with simple register
move (RMOV) instructions, we show that most operands
can be converted to the statically determined distances
and the remainder can also be represented using the
SPADD instruction.

e A cycle-accurate simulator that faithfully models the
pipeline stages of STRAIGHT is developed for the
performance evaluation. The compiled code of standard
benchmarks (Dhrystone, Coremark) is used. The result
shows that STRAIGHT achieves 18.8% better perfor-
mance than modern OoO superscalar processors while
requiring a simpler hardware. STRAIGHT’s lower miss-
penalty enhances the performance. The restriction of
STRAIGHT ISA can deteriorate the performance with
increasing redundant RMOV instructions; however, most
of them are eliminated algorithmically by the compiler.

o The power efficiency is confirmed through RTL power
analysis. In-house RTL descriptions of STRAIGHT
is prepared. Comparative evaluation reveals that
STRAIGHT removes the power of register renaming and
improves the entire efficiency of the processor.

The remainder of this paper is organized as follows: Section

IT describes the motivation and the basic concept of the
STRAIGHT architecture. Section III presents the details of
both the ISA and the microarchitecture. Section IV presents
the compiler algorithm to generate the STRAIGHT machine
code. Section V shows the evaluation settings, followed by
section VI, which presents the evaluation results. Section VII
discusses the related works, and the paper is concluded in
section VIIIL

II. MOTIVATION
A. Advantages and Disadvantages of Register Renaming

To enhance the single-thread performance, register renaming
is critical in exploiting the additional ILP by solving the false
dependency hazard dynamically. In the front-end pipeline,
register renaming is applied to every instruction. It converts all
operand identifiers from logical register numbers to physical
register numbers that indicate the addresses in the internal
register file. This operation is implemented by multiple refer-
ences to the table composed of RAM or CAM that is called
the register mapping table (RMT) or the register alias table
(RAT).

In the RAM-based RMT, which has as many rows as the
number of logical registers, the RMT stores the corresponding
physical register number using the logical register number as
an index. The mechanism also has a circular FIFO called free-
list that holds all the physical register numbers that do not
correspond to any logical register at that time. The operation
for each instruction is as follows: i) The RMT is accessed
with source register numbers, and source physical register
numbers are obtained. The RMT is accessed simultaneously
with the destination register number, and the previous ded-
icated physical register number is obtained for the recovery
and retire operation. ii) A physical register number is provided
from the head of the free-list, and sent to the next pipeline
stage as the destination physical register number. The RMT
is simultaneously updated by writing this physical register
number. Through these operations, the code is now able to
exploit much greater parallelism.

However, register renaming is reported to be one of the
hotspots in terms of both power density and power consump-
tion [9] [10] [11] [12]. It lowers the efficiency of the OoO
CPU cores, with the result that a large fraction of energy
is consumed by RMT accesses that are not essential for the
execution. Each instruction requires three reads and one write
in a cycle, and the required number of read/write ports is
multiplied by the number of fetch width, which renders the
RMT one of the most multiported tables in the processor. This
multiported access also affects the clock frequency because
unless the RMT updates are completed, the renaming of the
next fetch group cannot start [13].

Moreover, the scalability of the instruction window whose
size determines the amount of exploitable ILP is also disturbed
by register renaming. The instruction window size is directly
related to the ROB, in which all in-flight instructions from
the dispatch stage to the retire stage are queued. However, the
size of ROB proportionally increases the branch miss-penalty.



When a mispredicted branch instruction is detected, the RMT
must be restored by walking the ROB from the tail (or from the
head, depending on the implementation) to the corresponding
branch instruction. The penalty is reported as several tens of
cycles with the 256-entry ROB on average, which considerably
affects the performance [14].

To be exact, a CAM-based RMT can avoid this penalty at
the expense of a large amount of RMT checkpoints. However,
it still disturbs the ROB scalability because the CAM-based
RMT cannot increase the number of physical registers. If the
number of physical registers are not sufficient for the number
of ROB entries, the stall due to the shortage of free physical
registers increases. Although register renaming provides an
important contribution to the acceleration of single-thread
execution, it also introduces design limitations, that causes the
slow progress in core performance improvement.

B. STRAIGHT Architecture Concept

Instead of managing the physical registers dynamically,
the STRAIGHT concept has been presented to solve the
false dependency hazard by the compiler, which eliminates
register overwrites [7]. Because the number of registers is
finite, each register is freed after a fixed period such that the
program length is not limited. To write the looped code without
overwrites, a technique is introduced. Register numbers are
indicated relatively by the dynamic instruction distance. In the
architecture, fetched instructions can be directly dispatched to
the scheduler. Not managed by any mapping table, the register
file can be built as a simple key-value store that is easy to scale.

However, realizing the computer for this novel instruction
format involves a number of challenges. Because of the unique
operand format, the practical ISA that can write the real ap-
plication has to be newly constructed. Especially, its viability
significantly owes to the code generation, nevertheless, to
develop the compiler for this instruction format is a novel
challenge. Moreover, in previous STRAIGHT concept, the
scalability has been prioritized and the large hardware that
is provided with thousands of registers are assumed, which
limits its use to the desktop or sever processors.

Hereafter in this paper, we realize and evaluate STRAIGHT
processor by resolving the challenges above. Also We design
STRAIGHT microarchitecture as small as conventional mobile
processors, which increases the opportunities to be utilized.

III. EFFICIENT STRAIGHT PROCESSOR CORE
A. Specifying STRAIGHT ISA

The developed STRAIGHT instruction set is a collection
of simple operations similar to the typical RISC architectures.
As in conventional OoO superscalar architectures, it provides
a sequential execution model and precise interrupts to the
programmer.

Figure 1(a) shows a simple example of the STRAIGHT
code. Each instruction performs an ordinary operation, but its
operands are given by the distance from the instruction that
produces the source value. For example, “[1]” of instruction

ZeroReg Type

lo: ORI SZERO 1 #1 31 25 0
I;: ORISZERO 1 #1  [opcobE | Imm |
/,—+|2: ADD [1][2] #2 OneReg Type
{ 13 ADD [1][2] #3 |3§pcooe |25 - ‘15 | °|
“~=1,: ADD [1][2] #5 R —
TwoReg Type
‘:\(“"’Is: ADD [1][2] #8 31 25 15 5 o
1t ADD [1][2] #13 [oPCODE [ srcRegl | srcRegR | (Imm)]
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Fig. 1. Example of STRAIGHT code and bit-field formats

I means that the instruction uses the result value of the previ-
ous instruction, and “[2]” means that the other operand is the
result value of the second previous instruction. Therefore, this
code calculates a Fibonacci series as long as the “ADD [1]
[2]” instruction is repeated. It is noteworthy that an operand
is represented as the distance in a control flow. Therefore,
it differs from the distance in the static order when a code
contains nonsequential program counter (PC) transitions such
as jump instructions.

Based on the above concept, we defined the bit-field for-
mat of the STRAIGHT instruction set architecture as shown
in figure 1(b). Because an instruction does not specify the
destination register identifier, each identifier for the source
operands can use a larger field. A source operand field can
span up to 10 bits, which means that the results of the last
210 _ 1 = 1023 instructions can be referenced. Here, “[0]”
is decoded as a zero register. Store (ST) instructions need not
make the register output, but to make the distance calculation
simple, each instruction occupies one destination register. If it
is referred, store value is returned in the current specification.

This unique representation contains some characteristics
of the dataflow, and satisfies the following restrictions cor-
responding to the STRAIGHT concept. First, it guarantees
the write-once usage of each register. A register is identified
by the fetch order of the instruction, with the result that
any two instructions never share the same destination. Next,
because the operand is identified by the distance in the control
flow path, the lifetime of each register is determined by the
maximum distance (e.g., 1023 instructions). The value will
be never referenced after the succeeding 1023 instructions are
executed.

STRAIGHT requires an additional architectural register,
“stack pointer (SP).” This is the only overwritable register, and
it guarantees that any complicated algorithm can be written at
the least using SP as a memory pointer. We find that adding
one instruction, “SPADD” to the instruction set is sufficient
to SP-related operations, which reads and modifies the SP
by adding the given immediate value as well as writing this
result to its destination register. The succeeding load and
store instructions can use the SP value by indicating the
distance from the SPADD instruction. As described in the
compiler section below, the SPADD is utilized to compile the
complicated control flows such as function calls.
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Fig. 2. Pipeline organization of STRAIGHT

B. Realizing Scalable OoO Execution

The pipeline organization of STRAIGHT is designed as
shown in figure 2. As the operations of the instruction set
are similar to those of conventional RISC architectures, most
of the pipelines are also composed of conventional mecha-
nisms. The major differences are in the following mechanisms:
the mechanism in the front-end pipeline that determines the
operand register number and the retire/recovery mechanism,
which is related to the ROB.

First, the detailed mechanism of the operand determination
is shown in figure 3. This operation corresponds to the RMT
accesses for conventional OoO superscalar processors. To
obtain the physical source register numbers from the source
distances given by an instruction, a special register, register
pointer (RP), is introduced in the hardware. Incremented for
each instruction, the RP value provides the destination register
number, and the source register numbers are obtained by
subtracting the distance from RP. As shown in figure 3,
multiple instructions in a fetch group can be operated in
parallel because the RP value for each instruction is rigidly
determined regardless of the operation of the preceding in-
struction. Therefore, the fetch width can extend as far as it
is effective. The RP value returns to zero when it exceeds its
maximum value MAX_RP.

Figure 3 also shows the mechanism related to SP. SP is
the only overwritable register and is operated by only the
SPADD instruction. As we designed the SPADD instructions
to require only an immediate operand, the instruction can
update the SP in order at the decode stage. Subsequently, the
SPADD instruction writes the copied SP value to its destina-
tion register, which can be performed in the OoO manner.
Guaranteeing multiple SPADDs in a fetch group requires the
cascaded SPADD calculations in a cycle, which possibly affect
the clock frequency. The number of SPADD instructions in a
fetch group can be restricted by stalling and the performance
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effect of this stall is negligible because the SPADD interval is
very long (two per function call, at the most).

Next, the retire/recovery mechanism is shown in figure 4.
Composed of a circular FIFO structure, the ROB maintains
the information about each in-flight instruction. One entry
maintains the part of the architecture state that will be changed
by the corresponding instruction. In STRAIGHT, the RP and
the PC of the instruction and the SP value at its decode time
are sufficient for an entry. Unlike the conventional architecture,
the retire operation only removes the completed instructions in
order from the head of the ROB unless the instruction causes
the exception or miss-recovery.

To reduce the hardware, each entry of the ROB does
not have to maintain the relevant RP. Only if the RP copy
corresponding to the ROB head is maintained, can the rest be
derived from the entry position. In addition, storing the SP
value for each ROB entry is also redundant because the SP
updates are very rare. Providing a small table and maintaining
pointers for it in the ROB saves significant ROB capacity.

The recovery operation from the branch misprediction or
other speculation is extremely simple compared to typical
superscalar architectures. Only one ROB entry read is suf-
ficient. By using the destination register number of the oldest
instruction in the discarded path as a key, the SP and PC (that
is obtained by the execution result for branch misprediction
recovery) for the restart are obtained from the ROB. That



register number is also used for RP restoration. No ROB
updates are required except the tail pointer movement. This
operation is sufficient to ensure that the microarchitectural
changes generated by the mispredicted instructions will be
overwritten eventually by the restarted correct path execution.
Although not mandatory, to save the power consumed by
invalid instructions, a partial flush of the scheduler, pipelined
functional units, and the load-store queue can be performed
using the corresponding RP value.

MAX_RP physical registers are sufficient to avoid unex-
pected physical register aliasing because the register number
never exceeds that value. Here, one should consider deriving
the value of MAX_RP to save the register values from the un-
expected overwrites. When instruction k that uses k as the des-
tination register number is about to retire, the value of register
(k — the maximum distance) must still be maintained. There-
fore, the corresponding number must not appear in RP before
the retirement of instruction k. Nevertheless, at that time
the youngest in-flight instruction receives the register number
(k + the number of ROB entries). Thus, MAX_RP is given
by (the maximum distance + the number of ROB entries).

As shown, STRAIGHT improves the efficiency of the OoO
execution by removing register renaming. Moreover, because
it eliminates the ROB walking penalty, STRAIGHT enables
the instruction window to be further increased. By eliminating
hotspots caused by register renaming, STRAIGHT can operate
at the same or higher frequency compared to the conventional
000 superscalar processor with the same issue width and the
same number of functional units. Nevertheless, the architecture
does not prevent configuring the small efficient core. The
number of the physical register required is determined by the
ROB size and the maximum distance, therefore smaller core
can be configured by shrinking those values.

IV. STRAIGHT COMPILER TECHNOLOGY
A. Compilation Flow of STRAIGHT Compiler

The STRAIGHT compiler generates the STRAIGHT assem-
bly where every source register is expressed as a distance. In
this section, we explain that any program is converted into
the STRAIGHT assembly correctly. We adopted LLVM IR
as the input of the STRAIGHT compiler. The advantage of
adopting it is that LLVM IR is an SSA-formed IR. Every
destination register in the SSA-formed IR is not overwritten
statically and this manner is similar to the register management
of STRAIGHT.

In the STRAIGHT architecture, every distance is calculated
by the number of in-order instructions between the producer
and consumer on the execution path. However, if any control
flow merges in the control statements including the if- and
while- statements, the distance in each path can differ. In this
case, the STRAIGHT compiler adds instructions such that the
distance is fixed, as described below.

B. Calling Convention

Basically, the STRAIGHT architecture stores arguments and
returns values in registers. Instructions that generate those

caller

producer of arg0
producer of argl

JAL #callee
| offset

callee

producer of retval0
‘_‘ offset

Fig. 5. Instruction Arrangement in Calling Convention
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following instructions

values are arranged in a fixed order defined by the function,
as shown in Figure 5. In this manner, any caller can pass
and receive the variables. For example, Figure 6 shows how
arguments and return values are passed. In this example, the
calling convention is to place the producer of argument argl
just prior to the jump-and-link (JAL) instruction and place the
producer of arg0 just before it. As long as callers satisfy this
convention, distances between an instruction in the callee to
producers of the argument are fixed regardless of which JAL
instruction is invoked. In the example, the instruction ADD
[4] [3] in the callee always refers arg0 and argl.

The return address is passed to the callee by the JAL
instruction that writes its PC+4 to its destination register. The
jump register (JR) instruction in the callee refers the JAL
instruction by the distance, which realizes the return operation.
Variable arguments such as printf in C language requires
are passed via stack frame. Calling conventions for System
calls are defined in a similar manner. Functions can be defined
to return one or multiple values by defining the distances
between the JR instruction and producers of return values.
For example, the ADDi [3] 1 instruction following the JR
instruction calculates retvalO plus 1.

If the producer instructions cannot be arranged as the
convention, the register move (RMOV) instructions are used
instead. RMOV copies its source register value into its destina-
tion register, such that it can arrange the order of the produced
values.

Alive variables are stored in the stack frame using the SP
before the function call. The SP is incremented or decremented
by the SPADD instruction. SPADD instructions are generated
at the entrance and the exit of the function. LD and ST
instructions can access the stack frame by referring the relevant
SPADD instruction because SPADD writes the updated value
of SP into its destination register.

C. Code Generation

1) Operation Translation: Figure 7 shows the compilation
flow. The compilation process consists of three steps. First,
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the STRAIGHT compiler translates operations in LLVM IR
into those in STRAIGHT as the compiler for conventional
architectures. Some instructions are added or deleted in this
process because operations in LLVM IR and STRAIGHT do
not always correspond exactly.

2) Distance Fixing on Merging Flow: Here, the
STRAIGHT compiler adjusts distances from a consumer
instruction to producer instructions to the same length
regardless of the control flow. Any control flow is classified
as either branching or merging. Figure 8(a) shows that the
distances to the producer instruction are always fixed in the
case of branch. However, distances can differ in the case of
merge, as shown in Figure 8(b). In this case, the STRAIGHT
compiler adds RMOVs at the tail of each merging basic block
to fix the distance basically, as shown in Figure 8(c).

These RMOVs are added by using the following algorithm.
First, the STRAIGHT compiler obtains the information on all
possible producers and corresponding merging basic blocks
from PHI instructions in LLVM IR. A PHI instruction is
appeared when a operand has multiple producer candidates.
A distance also varies when there are multiple paths from one
producer instruction to its consumer. The information of such
producers and merging basic blocks is obtained by liveness
analysis as well.

RMOVs are added at the tail of such merging basic blocks
to fix the distance regardless of the control flow. This process
is repeated as many times as the number of live variables.
RMOVs are stacked up on the tail of merging basic blocks

roducer
P producer

RMOV

consumer |

©

BB2

Fig. 8. Distances on control flows

not to change the distances that have been already fixed.
NOPs are also added to eliminate the distance differences that
are caused when there are fall-through paths. Although these
RMOVSs appear to be redundant, the optimization described later
can reduce them.

Figure 9 shows an example of the fixed distances of the
counter variable in the loop statement. The counter variable is
initialized in the BBO (ADDi [0] 0) and incremented before
the conditional statement in the BB2 (ADDi [4] 1). The
SLT at the head of the BBI take the counter variable as its
source operand. There are two paths to this operand: from the
BBO0 and the BB2. The operand of SLT1i is fixed as [2] by
adding RMOVs.

3) Distance Bounding: The STRAIGHT architecture has
the maximum distance of source registers. Therefore, the
STRAIGHT compiler adds RMOVs that relay the values when
any distance exceeds the maximum. Each RMOV is added in the
possible maximum distance from the consumer avoiding the
added RMOVs. The STRAIGHT compiler repeats this process
until every distance is equal to or less than the maximum.

D. Optimization specific to STRAIGHT

Thus far, the method that convert any program to the
STRAIGHT code that satisfies the requirement of the archi-
tecture is described. Furthermore, in addition to the basic
STRAIGHT code generation, the compiler can optimize the
code from the aspect of its specific register management.

We designed the redundancy elimination that reduces
RMOVs of which example is shown in the figure 10. (a), (b),
and (c) are lists of STRAIGHT code that are compiled from
the source code above with the different optimization level.
Here, “%%” in the list is a pseudo code which generates the
indicated variables.

In the basic compilation algorithm, RMOVs are generated
proportionally to the number of live variables that are read
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through the merging flows. For example, the loop body in
the figure 10(a) contains four RMOVs out of ten instructions.
The instructions only for fixing the distance occupy most
of the loops, which causes the performance degradation.
However, the distances can be fixed without adding RMOVS
by rearranging the producer instructions in most cases. In the
example of the figure10(b), two ADD1i instructions can place
instead of RMOVs because their result are not used within the
iteration. Now those instructions generate values and adjust
distances at the same time. The number of RMOVs is reduced
to two out of eight instructions.

The figure 10(c) shows the other method to remove
the RMOV instruction. In the example, the return address
“ RETADDR” is stored in the stack frame and loaded after the
loop completion. In fact, the variable is never used during the
loop execution, therefore the corresponding RMOV only relays
the variable. Storing such variables in the stack frame can
reduces all RMOVss that only relay the variables. Now the loop
contains only one RMOV out of seven instructions. Generally,
in cases where the variables are not read in the near future,
this method is effective.

V. EVALUATION METHOD
A. Simulated Models

STRAIGHT is a novel architecture that has different in-
struction sets and execution pipelines. To confirm its feasi-
bility for executing application programs, we developed an
in-house cycle-accurate simulation environment. A compiler,
an assembler, a linker, and a cycle-accurate simulator are
developed. The simulator faithfully models all pipeline stages
of STRAIGHT, involving OoO scheduling, branch prediction,
memory dependency prediction, a load-store queue (LSQ)
for memory disambiguation, cache hit/miss prediction, the
scheduler replay, a stream prefetcher for data caches, and the
mechanisms for the misprediction recovery.

We also compared STRAIGHT to the conventional super-
scalar to reveal whether this architecture improves the perfor-
mance and efficiency. An in-house cycle-accurate simulator of
RISC-V (RV32IM) is also developed as a superscalar coun-
terpart. The RAM based ROB is assumed in the evaluation.

source code

void iota(intarr[], int N) {
inti;
for(i=0;i<N;++i){
arrfil = ;

STRAIGHT code
%% arg0 : arr %% arg0 : arr %% arg0 : arr
%% arg1:N %% arg1:N %% arg1:N
%% _RETADDR %% _RETADDR %% _RETADDR
Function_iota : Function_iota : Function_iota:
ADDi $ZERO, 0 #i=0 ADDi $ZEROO #i=0 SPADD 4
RMOV [4]  # &arr[0 NOP ST 2101
RMOV[4] #N Label_for_cond: RMOV [5 # &arr[0
RMOV[4] # RETADDR SLT [2114] RMOV [5 #N
RMOV[4] #i BEZ [1] Label_for_end ADDi $ZEROO #i=0
NOP ST [M41([7] NOP
Label_for_cond : ADDi [8]4 # &arrli] Label_for_cond:
SLT [21[4] RMOV[8]  #N SLT [21[3]
BEZ [1] Label_for_end RMOV [8 # RETADDR BEZ [1] Label_for_end
ST [41([7 ADDi [8]1 #++i ST [41[6]
ADDi [5]11 #++i J Label_for_cond ADDi [7]4 # &arrfi]
ADDi [9]14 # &arrli] Label_for_end: RMOV [7] #N
RMOV [1 # &arr[i JR [51 ADDi [7]11 #++i
RMOV[10] #N J Label_for_cond
RMOV[10] # _RETADDR Label_for_end:
RMOQV [5 #i SPADD -4
J Label_for_cond LD 114
Label_for_end: JR (1]
JR[5]
(@) (b) (©)

Fig. 10. STRAIGHT code and optimization

The front-end is stalled if the walking has not been completed
when the first group of re-fetched instructions reaches to
the rename stage. The ROB-walking width is same as the
speed of frontend-width. Because the back-end pipeline of
STRAIGHT is similar to conventional superscalar processors,
both simulators can share common codes for the most part.
Therefore, this superscalar model is also provided with the
same state-of-art ILP technologies as described in above. As
the equalization to RV32IM, we set STRAIGHT as a 32bit
architecture and disabled the floating-point instructions and
modules in the evaluation.

The evaluated processor models and their parameters are
shown in Table I. As shown, the sizes of each module are set
to the same value between the “SS” and “STRAIGHT” models
to clarify the comparison, which represent the superscalar and
STRAIGHT, respectively. We configure two classes named
“4way” and “2way” to confirm the behavior of the different
typical design scales. “4way” models the high-end CPU cores
for desktop PCs and servers in which the OoO execution fully
shows its abilities. “2way” models smaller OoO cores for the
emerging mobile devices. The maximum distance is set to
31 in STRAIGHT-4way and STRAIGHT-2way models. This
value is determined only for equalizing the number of the
ROB entries and the number of the physical registers to SS
parameters. The architecture’s optimal parameter can be differ-
ent, however the parameter is set to clarify the comparison as
described above. As the instruction set is different from each
other, the performance is measured by the execution cycles
to complete the programs that are compiled from the same



TABLE I
EVALUATED MODELS

2-way 4-way

SS [ STRAIGHT SS [ STRAIGHT
ISA RV32IM [ STRAIGHT | RV32IM [ STRAIGHT
Fetch Width 2 6
Front-end latency 8 [ 6 8 [ 6
ROB Capacity 64 224
Scheduler 2 way, 16 entries 4 way, 96 entries
Register File 96 256
LSQ LD 48 / ST 48 LD 72/ ST 56
Exec Unit ALU 2, MUL 1, ALU 4, MUL 2,

DIV 1, BC 2, Mem 2 DIV 1, BC 4, Mem 4

Commit Width 3 4

Branch Predictor Gshare, Global History 10 bits, 32K entries

32 KiB, 4 way, 64 B line,

LII Cache 4 cycle hit latency
32 KiB, 4 way, 64 B line,
LID Cache 4 cycle hit latency
256 KiB, 4 way, 64 B line,
L2 Cache 12 cycle hit latency
2 MiB, 4 way,
L3 Cache N/A 64 B line,

42 cycle hit latency

Main Memory 200 cycle latency

source code.

Two standard benchmarks are used, Dhrystone 2.1 and
CoreMark. Both are representative general-purpose inte-
ger benchmarks, which are suited to evaluate the novel
processor’s fundamental characteristics. The STRAIGHT
code is generated by our STRAIGHT compiler that
takes the LLVM IR code obtained by using clang 3.8
with -02 and --target=mips-pc_linux-gnu -S
—emit-1lvm options as an input. The target option is
only for indicating the 32-bit architecture. The specific com-
piler front-end for STRAIGHT does not exist yet; however,
currently the front-end for mips is sufficient to output an
intermediate code for the STRAIGHT compiler back-end.
For both benchmarks, two STRAIGHT binaries are prepared;
STRAIGHT_RAW that is generated by the basic algorithm
described in Section IV-A to IV-C and STRAIGHT _RE+ that
is generated by adding the redundancy elimination described
in IV-D to STRAIGHT_RAW.

For the comparison, clang/LLVM is also used for gen-
erating the RISC-V code. The back-end for LLVM by
lowRISC is used. The code is generated with the —~02 and
-march=rv32im --target=riscv32 option.

The cycles to complete the fixed number of iterations of the
benchmark program is measured: 9000 times for Dhrystone,
and 9 times for CoreMark. The performances are shown by
using the inverse of the execution cycles.

B. RTL Power Analysis

To reveal the improvement of the power efficiency, we
performed a power analysis in the register-transfer level (RTL).
The RTL description of STRAIGHT that faithfully models
the OoO execution, speculation, and recovery mechanisms
is developed as well as an in-house RTL description of
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Fig. 11. Performance comparison of STRAIGHT and SS (4way)

RV32I that involves the state-of-the-art superscalar technology.
Similar to our simulator, both descriptions use the common
code as much as possible for the comparison. In fact, the only
differences are the modules related to front-end stages and
ROB. The organizations of the RTL processors are almost the
same as that of STRAIGHT-2way and SS-2way in the table I;
however, the functions for integer multiply/divide instructions
and general system calls are omitted.

We confirmed that both RTL processors can execute a test
code correctly. The power consumed during the test code
execution is analyzed using the Joules RTL Power Solution
of Cadence. For both processors, the same recent advanced
technology node is assumed. The baseline clock frequencies
is set to be comparable to that of modern mobile processors.
Several clock frequencies are set for the evaluation, in which
the RTL processors are synthesized with the relevant time
constraint for each.

VI. EVALUATION
A. Performance Comparison to the Conventional Superscalar

Figure 11 shows the performance of STRAIGHT-4way and
SS-4way. Each bar shows the relative performance that is
normalized to SS-4way. The white bars represent the per-
formances of the superscalar processor and the black bars
represent those of STRAIGHT. STRAIGHT on Dhrystone
and STRAIGHT-4way_RE+ on CoreMark show the better
performance than SS-4way, which are by 15.7% on Dhrystone
and 18.8% on CoreMark, respectively.

On the other hand, the possible overhead of STRAIGHT
ISA is shown in STRAIGHT-4way_RAW on CoreMark that
degrades the performance by 4% from the baseline SS. The
reason is that a number of RMOV instructions are added by the
basic STRAIGHT compiler because CoreMark tends to have
the larger number of alive values through the execution than
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Dhrystone. However, the graph also shows that the overhead
can be reduced by the redundancy elimination algorithm, as
STRAIGHT-4way_RE+ shows the best performance.

Figure 12 shows the performance comparison of
STRAIGHT-2way and SS-2way in the same manner. The
relative performance degradation of STRAIGHT-2way_RAW
is larger than that of the four-way configuration. This is
as expected; in the current model, each RMOV instruction
behaves as one ALU instruction. The impact of increased
RMOV instruction becomes relatively large in the smaller
configuration. However, in this small OoO core configuration,
STRAIGHT-2way_RE+ also shows a comparable or better
performance to its superscalar counterpart; it degrades the
performance by 7.4% from SS-2way on Dhrystone but
improves by 5.5% on CoreMark. The redundant elimination
algorithm is also effective for the smaller core.

As both architectures are configured to have the same
pipeline width, instruction window sizes, and predictors, the
significant reasons for performance difference are as follows:
1) ISA characteristics in STRAIGHT that eliminates register
overwrites by adding RMOV instructions or LD/ST instructions.
i) STRAIGHT has fewer misprediction penalties because of
its recovery mechanism and shorter front-end pipeline. The
former can degrade the performance of STRAIGHT while the
latter improves the performance.

The impact of the rapid recovery of STRAIGHT is shown
in Figure 13. The graph shows the performance of SS and
STRAIGHT_RE+ as well as the performance when the mis-
prediction penalty of SS is idealized to zero. Both 2way and
4way performances on CoreMark are shown.

As shown in the graph, the effect of misprediction penalty is
significant for the superscalar. The effect is around 20% that is
similar amount to the reported in [14] on the integer programs
when RAM based RMT and ROB walking are configured.

SS |
SS |

SS no penalty |
SS no penalty |

Relative Performance (Normalize to SS 2-way)
COO0O00O0O000 PR RER
OFRPNWPAPUUAOANOOOORENWRAOUV
|
|
sTraGHT(RE+) [
|

sTraiGHT(RE+) [

2-way 4-way

Fig. 13. The effect of the misprediction penalty

Although the RMT technologies for reducing this penalty are
exist, they increase the RMT power further. As the strong point
of STRAIGHT, it reduces this penalty with simple hardware
such that the performance and efficiency are both improved.

Branch prediction technologies can also reduce the recovery
penalty. To reveal this impact, we implemented TAGE predic-
tor (8-component CBP-TAGE) [15] to our simulator. Figure 14
shows the relative performance of CoreMark when TAGE is
used instead of the conventional gshare predictor. As expected,
relative performances of STRAIGHT is reduced for both 2-
way and 4-way because the performance of the baseline SS is
relatively improved by the reduced recovery penalty. However,
STRAIGHT-4way shows 10% better performance even in this
configuration. The basic characteristic is kept; STRAIGHT
shows comparable or better performance.

Next, figure 15 shows the number of executed instructions
on CoreMark to contrast code characteristics. Each bar is
normalized to the total instruction count of SS. The graph
also shows the fraction of instruction types for jump or branch,
ALU, LD/ST, RMOV, NOP, and others. The graph shows that
STRAIGHT_RAW requires more code than SS to complete
the same program. The increased instructions are shown to be
primarily RMOVs to adjust the distance. This is the possible
impact of the naive STRAIGHT ISA code in exchange for the
simpler hardware.

STRAIGHT_RE+ reduces the instruction count drastically,
which shows the impact of the compiler technology for
STRAIGHT. The count of increased RMOVs are now reduced
to about 20% of the baseline SS. As the performance eval-
uation shows, the performance of STRAIGHT_RE+ is better
than SS in the same issue-width for the most case. This means
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that the increased 20% instructions can be executed in parallel,
and they can utilize the empty issue slots that are reserved for
the maximum ILP.

B. The Sensitivity of STRAIGHT design parameters

Figure 16 shows the source distance distribution in the
cumulative graph. The distribution of source operand distances
is measured for all retired instructions. The code that is
generated with the uppermost distance limitation (1023) is
used for this measurement. The actual maximum distance of
the generated code is under 127 for each benchmark. The
graph shows that most of the distances between producer
instructions and consumer instructions are within 32. The
graph also shows that almost 40% of the source operands in
Dhrystone and 30% of those in CoreMark are the result of the
previous instruction.
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1 2 4 8 16 32 64 128
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Fig. 16. Cumulative Fraction of the Source Distance

The result indicates that the short operand field is sufficient
to represent the source distance. The distance limitation of
STRAIGHT ISA is not severe unless it is set to below 31.
This trend helps to reduce the STRAIGHT hardware resources
for physical registers as well as to shrink the instruction
length. We confirmed this by simulation with CoreMark.
The performance degradation is only around 1% when the
maximum distance is reduced from 1023 to 31.

C. Power Reduction

Figure 17 shows the result of the RTL power analysis. The
relative powers of SS and STRAIGHT for various frequencies
from the baseline to 4.0 times of the baseline are shown. In
the graph the powers for the rename logic, the register file, and
“other modules” are shown normalized to the corresponding
power of SS when operated in the baseline frequency. “Other
modules” involves the rest of the core, but caches, the buses,
and the branch predictor are not included. The White bars
indicate SS and the black bars indicate STRAIGHT. For
“rename logic” of STRAIGHT, the power of the circuit for
operand determination (fig 3) is shown as the counterpart.

As clearly shown in the graph, the power corresponding reg-
ister renaming is almost removed in STRAIGHT. The power
efficiency of STRAIGHT is supported because this power
is known to one of the major factors of recent processors’
power dissipation. The effect increases as the frequency. For
the reference, the proportion of the renaming power is 5.7%
to the other modules in this analysis. Because the scale of
the analyzed processor is small, the proportion will increase
when the wider front-end width is configured or check point
is introduced to reduce the miss-recovery.

The power of the register file and other modules show the
slight increase in STRAIGHT. The amount is under 18% for
the register file and under 5% for other logics. This is the effect
of the increased instructions per cycle (IPC) of STRAIGHT.
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For the aspect of energy, the performance improvement cancels
this increase by the reduced execution time.

VII. RELATED WORKS

The single-thread performance is intensively researched by
various approaches because of its significance. While the
superscalar architecture achieves the sophisticated OoO exe-
cution with the support of register renaming, scheduling, deep
pipelining, smart cache managements, and various predictors,
its complexity and power consumption per instruction are
major drawbacks.

The limitation and optimization of the superscalar pipeline
depth are comprehensively explored around the turn of the
century [16] [17] [18], which enforces researchers to explore
novel ILP architectures as well as effective microarchitectures.
Scalable ILP architectures such as clustered architectures are
examples of the representative approaches [13] [19] [20]. Their
basic idea is to separate the wide-issue core into several
execution blocks to maintain the critical loops short regardless
of the entire processor’s scale.

The single-thread program often lacks parallelism to fully
utilize such wide-issue cores. Speculative multithreading [21]
[22] technologies are presented to supply many instruction
streams to the core(s) by speculatively separating a single-
threaded program into multiple threads. Slipstream processors
[23] and Runahead execution [24] are similar but more drastic
technologies that utilize helper threads only for the training of
predictors and caches.

For the recent heterogeneous multicore processors, the tech-
nology for “Oo0 performance with in-order power” is desired
for the total chip performance improvement. Kumar et al. [25]
showed the potential of heterogeneous multicore architectures
to improve the efficiency of a single-thread execution by
switching the dedicated core dynamically. Different scale cores
that share the same ISA are implemented in a chip, and an
adequate core is selected depending on the ILP amount of
the thread. It is known that the adequate configuration for the
program changes in less than a thousand instructions [26].
Composite cores [27] or FXA [28] introduces both OoO and
in-order mechanisms into a core to enable rapid switching.
Mirage Core [12] virtually increases the number of OoO cores

by transferring the scheduled instructions to the smaller in-
order (OinO) cores.

As discussed, register renaming increases the OoO core’s
power consumption as well as it affect the clock frequency
by introducing the critical-loop into the front-end pipeline.
Safi et al. [10] proposes the two-stage pipelined renaming
logic to reduce both the power and frequency overheads.
Vajapeyam et al. [29] proposed the renamed trace cache (RTC)
to cache renamed operands. Shioya et al. [11] introduced the
distance representation into RTC to extend the caching target.
Although conventional RMT is required for the RTC miss,
both approaches have the advantage of compatibility.

TILE architectures target both the simple hardware and
wider execution of single-thread performance. By introducing
a specific ISA, the architecture maps the dataflow graph almost
directly onto its ALU networks [30] [31]. A hybrid approach
has been introduced to increase its viability [32].

The concept of STRAIGHT [7] reduces the required hard-
ware and improves the performance and power efficiency
by leveraging the compiler support. Unlike VLIWs [33],
which also leverages compiler technologies, its scheduling
is performed by the hardware, which enables dynamic and
speculative ILP execution.

The instruction format of STRAIGHT has partially sim-
ilar characteristics to instruction representations of dataflow
architectures [34] [35] [36] in those an operand is repre-
sented as a connection between a producer instruction and
a consumer instruction. Unlike RISC architectures, a register
number (name) is not essential for both dataflow architectures
and STRAIGHT; and a value in a register is automatically
discarded in a short period. In STRAIGHT, this property leads
to the simple hardware structure because temporal values can
be maintained in a queue structure instead of a map structure.

The mechanism to pass the live variables across code
blocks often becomes a challenge in such designs because
the producer-consumer relation is not so simple in that case.
STRAIGHT’s approach is to statically prepare code that equal-
izes the relative distance between a consumer and producers so
that the operand fetch behavior is fixed regardless of execution
paths. The use of such relative distance is also seen in hy-
brid dataflow architecture SINAN [37] that passes arguments
according to the relative position in the data segment to
improve the inter-block communication. Contrary to typical
dataflow architectures where a producer instruction specifies
its destinations, the direction is inverse in STRAIGHT, that is,
a consumer instruction refers to the source at its execution.
This design can avoid the fanout problem but requires a
broadcast mechanism in the scheduler.

Same as RISC architectures, the execution model of
STRAIGHT inherits control flow guided by PC, which enables
to exploit speculations for pumping instructions into the deep
fast pipeline without waiting for actual execution. The two
different approach, dataflow and control flow, are bound at
the instruction level by RP that is incremented by the control
flow and is used as a data pointer. Contrast to the typical
dataflow architectures which require hierarchical structure of



inter-block and intra-block, this instruction level unification
makes STRAIGHT a simple flat architecture.

VIII. CONCLUSION

Herein, we presented the practical STRAIGHT architecture
by describing its ISA specification, microarchitecture organi-
zation, and compiler algorithm. By indicating source operands
based on the distance from the producer instruction, the ISA
guarantees that each register will be written once and then
discarded in a fixed period. These characteristics enable the
design of a novel microarchitecture that eliminates register
renaming while maintaining a flexible OoO execution. The
compiler algorithm that generates code for this novel ISA is
first revealed. The key idea is to arrange the alive variables
in a fixed order regardless of the control flow variation. The
performance is evaluated with a cycle-accurate simulator; the
power consumption is evaluated by the RTL power analysis.
The same sized superscalar counterpart is also developed for
the comparison.

The evaluation result shows that STRAIGHT achieves a
higher performance with the simpler hardware. It shows 18.8%
better performance than its superscalar counterpart. The low
misprediction penalty delivered by STRAIGHT’s simple hard-
ware supports the superiority. The unique ISA of STRAIGHT
possibly deteriorates the performance with the naive compiler,
however, we also revealed that our redundancy elimination
resolves the overhead. STRAIGHT shows better performance
than the superscalar processor in the small configuration as
well, which demonstrates its suitability for mobile platforms.
The RTL power analysis shows that STRAIGHT reduces the
power consumption by removing the power for renaming.
Therefore the architecture achieves the performance improve-
ment with the lower energy by the simple hardware. The
results support that the architecture is a novel viable alternative
for designing general purpose OoO processors.
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