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Abstract—Various techniques, such as cache replacement algo-
rithms and prefetching, have been studied to prevent instruction
cache misses from becoming a bottleneck in the processor front-
end. In such studies, the goal of the design has been to reduce
the number of instruction cache misses. However, owing to
the increasing complexity of modern processors, the correlation
between reducing instruction cache misses and reducing the
number of executed cycles has become smaller than in previous
cases. In this paper, we propose a new guideline for improving
the performance of modern processors. In addition, we propose a
method for estimating the approximate performance of a design
two orders of magnitude faster than a full simulation each time
the designers modify their design.

Index Terms—instruction fetch, modeling techniques

I. INTRODUCTION

Various techniques, such as cache replacement algorithms
and prefetching, have been studied to prevent instruction cache
misses from becoming a bottleneck in the processor front-
end. In such studies, reducing the number of instruction cache
misses has often been focused on evaluations. Although the
metrics used by the studies vary, such as the number of cache
misses per 1000 instructions [1]–[3], as well as cache hit
rate [4], cache miss rate [5], cache miss reduction rate [6],
and coverage [7], they all focus on whether the number of
cache misses is reduced.

However, owing to the increasing complexity of modern
processors, the correlation between reducing the number of
instruction cache misses and reducing the number of exe-
cuted cycles has increasingly decreased. Indeed, in classical
processors, an instruction cache miss can immediately lead
to a stall, which can be a performance-critical issue. By
contrast, this is not always the case with modern processors.
In the front-end of a modern processor, an instruction cache
access is decoupled from branch prediction [8]–[10]. In such
processors, subsequent instructions continue to be fetched after
an instruction cache miss, and subsequent instruction cache
misses are handled in overlap with the previous instruction
cache miss until the next branch misprediction. Therefore, in
modern processors, a reduction in the number of instruction
cache misses does not always lead to a reduction in the number
of executed cycles.

Hence, designers of instruction caches are required to verify
the performance by simulating the entire processor pipeline,
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not just the behavior of the instruction cache. Although
simulations of the entire processor pipeline indicate the perfor-
mance of the designed processor, they provide the designer no
guidance for increasing the performance. Hence, the designers
repeat the simulation and explore a design space based on
their heuristics. In addition, simulating the entire processor
pipeline wastes time by simulating components unrelated to
the instruction cache.

In this paper, instead of reducing the number of instruction
cache misses, we propose a new guideline for improving the
performance of modern processors. We also propose a method
for estimating the processor performance without simulating
the entire processor pipeline when the instruction cache design
is modified. Using this method, once the designers have
obtained the baseline performance by simulating the entire
processor pipeline, they can estimate the processor perfor-
mance without repeating simulations of the entire processor
pipeline.

Our contributions are as follows.
• We show that reducing the number of instruction cache

misses is insufficient for designing instruction caches in
modern processors.

• We propose a new guideline for achieving a performance
improvement instead of reducing the number of instruc-
tion cache misses.

• Based on the guideline, we propose a method for es-
timating the performance after modifying the instruction
cache design. Using our proposed method, once designers
obtain the baseline performance by simulating the entire
processor pipeline, they can estimate the change in perfor-
mance by simulating only the behavior of the instruction
cache. In our preliminary evaluation, the simulation time
for the instruction cache alone was ∼ 3s on average,
and that for the entire processor pipeline was ∼650s on
average.

• Our proposed method estimates the performance when
applying an instruction prefetcher with an average error of
1.1% and a maximum error of 4.1%, whereas the estimate
using the number of instruction cache misses achieved an
average error of 9.0% and a maximum error of 43.1%.

II. FRONT-END OF MODERN PROCESSORS

In classical processors, because branch prediction and in-
struction cache accesses operate in synchronization, instruction
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Fig. 1. Front-end behavior of (a) classical and (b) modern processors.
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Fig. 2. Pipeline diagrams of (a) a classical processor and (b) a modern
processor. P, F, D, X, and M represent instruction fetching according to
the addresses in the FTQ (prefetching), demand fetching, instruction decode,
execution, and processing of an instruction cache miss, respectively.

cache misses immediately stall the pipeline. Fig. 1a shows its
structure and behavior. In such processors, each instruction
cache miss delays the instruction fetching, as shown in Fig. 2a.

By contrast, modern processors have a front-end where
instruction cache accesses are decoupled from a branch pre-
diction [5], [8]–[11]. Fig. 1b shows its structure and behavior.
The branch predictor predicts instruction addresses, which are
then inserted into a queue called fetch target queue (FTQ).
According to the addresses in the FTQ, instruction fetching
from the instruction cache proceeds sequentially.

In this decoupled front-end, an instruction cache miss
stalls neither branch prediction nor instruction cache accesses,
whereas it stalls both in classical processors. Even if an
instruction cache miss occurs, the branch predictor continues
to predict until the FTQ is full. In addition, addresses following
the missed address are sequentially retrieved from the FTQ,
and instruction cache accesses continue using those addresses.

If a miss occurs in the subsequent cache access, the latency
of the first miss hides that of the subsequent miss, as shown in
Fig. 2b, thus mitigating the increase in processing time. Con-
sidering that modern processors have a decoupled front-end,
researchers at Arm have argued that the study of instruction
prefetching should be based on a decoupled front-end [12].

III. DESIGN GUIDELINE FOR IMPROVED PERFORMANCE

A. Gap between Reduction in Instruction Cache Misses and
Reduction in Executed Cycles

Instruction cache designers have focused on reducing in-
struction cache misses as a guideline for improving the per-
formance. However, we found that the guideline for reducing
the number of instruction cache misses does not necessarily
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(b) A reduction in miss regions.

Fig. 3. Relationship between each metric and a reduction in executed cycles.

achieve a performance improvement in modern processors,
where instruction cache accesses are decoupled from branch
prediction. Fig. 3a shows the relationship between a reduc-
tion in instruction cache misses and a reduction in executed
cycles when adding return-address-stack directed instruction
prefetching (RDIP) [1] in a decoupled front-end. The simula-
tion environment and workload are described in Section V-A.
Some points are distributed around the horizontal axis in
the figure, indicating that reducing the number of instruction
cache misses does not reduce the number of executed cycles
for some workloads. Hence, the strategy of reducing the
number of instruction cache misses is insufficient to achieve
a performance improvement in modern processors with a
decoupled front-end.

B. Metric Showing a High Correlation with a Reduction in
Executed Cycles

1) Hit and Miss Regions: To clarify the relationship be-
tween instruction cache misses and performance in processors
with a decoupled front-end, we focused on the relationship
between branch mispredictions and instruction cache misses.
Herein, “branch misprediction” includes a branch target buffer
(BTB) miss. As mentioned above, once an instruction cache
miss occurs in a decoupled front-end, the latency of the
subsequent instruction cache misses is hidden. This hiding of
the latency is effective until the next branch misprediction.
When a branch misprediction is detected during the decoding
or execution stage, the pipeline, including the FTQ, is flushed.
Then fetching instructions on the correct path starts in the next
cycle. Because the FTQ is empty at this time, the interval
between the P-stage and F-stage, which has widened after
the first cache miss shown in Fig. 2b, becomes zero. Thus,
the latency of the next cache miss increases the number of
executed cycles.

Based on this observation, we consider one branch mispre-
diction to the next branch misprediction as a region. We call
a region not containing instruction cache misses, as shown
in Fig. 4a, a hit region, and a region containing one or
more instruction cache misses, as shown in Figs. 4b and
4c, a miss region. As Figs. 4a and 4b show, if there is one
instruction cache miss in a region, the length of the processing
time increases based on the latency of lower cache access in
comparison to when no instruction cache misses occur. As
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Fig. 4. Concept of regions. P, F, D, X, and M represent instruction fetching
according to the addresses in the FTQ (prefetching), demand fetching,
instruction decode, execution, and processing of an instruction cache miss,
respectively.

shown in Figs. 4b and 4c, if there are two or more instruction
cache misses in a region, the processing time is the same as
one instruction cache miss.

2) Reductions in Miss Regions and Executed Cycles:
Based on the above insights, we found that to improve the
performance of processors with a decoupled front-end, it is
crucial to reduce the number of miss regions rather than
aiming to reduce the number of instruction cache misses.
To demonstrate this, we depict the relationship between a
reduction in miss regions and a reduction in executed cycles
when adding RDIP [1] in a decoupled front-end, as shown
in Fig. 3b. The simulation environment and workload are
described in Section V-A. Unlike in Fig. 3a, the points in
Fig. 3b do not concentrate on the horizontal axis. This result
means that the number of executed cycles can certainly be
reduced by reducing the number of miss regions.

IV. PERFORMANCE ESTIMATION

We propose a method for estimating the reduction in exe-
cuted cycles from a reduction in miss regions. This method
allows designers to estimate the performance of a processor
using a simple simulator that reproduces only the instruction
cache. In the following discussion, we introduce some sym-
bols. Let MR and HR be the set of miss regions and hit regions
of the baseline, respectively. In addition, let MR′ and HR′ be
the set of miss regions and hit regions after modifying the

instruction cache design, respectively. The number of regions
in a set is expressed using vertical bars, such as in |MR|.

To estimate the reduction in executed cycles from a re-
duction in miss regions, we define a penalty for a region.
This is the maximum number of cycles required to fetch
instructions in the region. Let Pi denote the baseline penalty
for region i, and P ′i denote the penalty after modifying the
instruction cache design. Suppose a workload is instruction-
cache-intensive, where modifying the instruction cache design
improves the performance. In this case,

(a reduction in executed cycles) '
∑
i

Pi −
∑
i

P ′i (1)

under the condition that the number of branch mispredictions
does not change before or after modifying the instruction
cache design. Some instruction prefetch techniques reduce the
number of branch mispredictions [13]–[15]. When applying
such techniques, we need to add a penalty for branch mis-
predictions to (1). This study considers the case in which the
number of branch mispredictions does not change before or
after modifying the instruction cache design. In Section V-B,
we demonstrate that (1) holds for the workload we used for
the evaluation.

Transforming the right-hand side of (1), we obtain the
following:∑

i

Pi −
∑
i

P ′i

=

(∑
i∈MR Pi

|MR|
|MR|+

∑
i∈HR Pi

|HR|
|HR|

)
−

(∑
i∈MR′ P ′i∣∣MR′

∣∣ ∣∣MR′
∣∣+ ∑

i∈HR′ P ′i∣∣HR′∣∣ ∣∣HR′∣∣) . (2)

We assume that the mean penalties for miss and hit regions are
almost unchanged before and after modifying the instruction
cache design, respectively, that is,∑

i∈MR Pi

|MR|
'
∑

i∈MR′ P ′i∣∣MR′
∣∣ ,

∑
i∈HR Pi

|HR|
'
∑

i∈HR′ P ′i∣∣HR′∣∣ . (3)

In Section V-B, we describe in detail whether (3) holds.
Because this study considers the case in which the number

of branch mispredictions does not change before or after modi-
fying the instruction cache design, the total number of regions
does not change before or after the modification, that is,

|MR|+ |HR| =
∣∣MR′

∣∣+ ∣∣HR′∣∣ . (4)

From (1), (2), (3), and (4),

(a reduction in executed cycles)

'
(∑

i∈MR Pi

|MR|
−
∑

i∈HR Pi

|HR|

)(
|MR| −

∣∣MR′
∣∣) , (5)

where
∑

i∈MR Pi

|MR| ,
∑

i∈HR Pi

|HR| , and |MR| can be computed si-
multaneously with the baseline performance by simulating
the entire processor pipeline. Therefore, |MR′| is the only
additional value needed to estimate a reduction in executed
cycles achieved by modifying the instruction cache design.



TABLE I
PROCESSOR CONFIGURATION

Module Parameter
Branch predictor GEHL perceptron, 64 KiB (232-bit history)
Target predictor 128-entry L1 BTB, 32-entry RAS, 1 cycle

4096-entry L2 BTB, 2 additional cycles
FTQ instruction granularity, 144 entries
Front-end width fetch width: 6, decode width: 6
L1I cache 32 KiB, 8-way, 4 cyclesa, FDPb

L1D cache 48 KiB, 12-way, 4 cyclesa, Next-line
L2 cache 512 KiB, 8-way, 15 cyclesa, SPP
L3 cache 2 MiB, 16-way, 45 cyclesa

Main memory 116 cyclesa
aThese values are typical (minimum) load-to-use latencies.
bRealized through the instruction-granularity 144-entry FTQ.

Based on the above discussion, the following performance
estimation flow is feasible.

1) By simulating the entire processor pipeline,
∑

i∈MR Pi

|MR| ,∑
i∈HR Pi

|HR| , |MR|, and the baseline performance are ob-
tained.

2) Using a simple simulator that replicates only the be-
havior of the instruction cache and receives a sequence
of cache accesses and branch mispredictions, |MR′| is
obtained.

3) A reduction in executed cycles is estimated according to
(5).

In this flow, we need to simulate the entire processor pipeline
only once. In our preliminary evaluation, the simulation time
for the instruction cache alone was ∼3s on average, whereas
that for the entire processor pipeline described in Section V-A
was ∼650s on average. Hence, the above flow significantly re-
duces the time required to explore the design space compared
to repeating the simulations of the entire processor pipeline.

V. EVALUATION

A. Methodology

We used ChampSim [16] to simulate a processor with the
configuration listed in Table I. We determined the value of the
parameters based on Intel Sunny Cove [17]. We made the size
of the FTQ larger than the default size of ChampSim, which
is 12, to simulate a front-end where instruction cache access is
decoupled from branch prediction. To simulate realistic branch
target prediction, we implemented the BTB and the return
address stack in ChampSim.

As the workloads, we used 50 traces distributed in the
1st Instruction Prefetching Championship [18]. We used the
first 50M instructions of these traces for warming up and the
following 50M instructions for the evaluation. Some of the
traces contain fewer than 100M instructions, and for those,
we warmed up with the first 50M instructions and then ran
simulations for the evaluation until reaching the end of the
traces.

B. Results

We added RDIP [1] to the processor as an example of a
modification in the instruction cache design. We checked that
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Fig. 6. Scatter plot comparing the mean penalties before and after applying
RDIP.

(1) and (3) held, i.e., that the workloads were instruction cache
intensive and that the mean penalty for miss/hit regions barely
changed before and after applying RDIP.

Fig. 5 shows the difference between the sum of the penalties
before and after applying RDIP (

∑
i Pi −

∑
i P
′
i ) on the

horizontal axis and a reduction in the number of executed
cycles by applying RDIP on the vertical axis. Each point
represents a workload, which mostly lie on a straight line with
a slope of 1 passing through the origin. This result means that
these workloads satisfy (1); namely, they are instruction-cache-
intensive.

Fig. 6a shows the mean penalty for miss regions before
applying RDIP (

∑
i∈MR Pi

|MR| ) on the horizontal axis and the mean

penalty after applying RDIP (
∑

i∈MR′ P
′
i

|MR′| ) on the vertical axis.
Similarly, Fig. 6b shows the mean penalties for hit regions
(
∑

i∈R Pi

|HR| and
∑

i∈HR′ P
′
i

|HR′| ). Each point represents a workload,
most of which lie on a straight line with a slope of 1 passing
through the origin, satisfying (3).

Fig. 7 shows the absolute value of the error of the esti-
mated cycle per instruction (CPI). The proposal represents the
CPI when applying RDIP, as calculated using our proposed
method, in which a reduction in executed cycles is estimated
by (5). Although, as mentioned above, |MR′| in (5) can be
obtained by simulating only the behavior of the instruction
cache, we calculated it using ChampSim, the reason for which
being that the purpose of this evaluation is not to verify
that simulating only the behavior of the instruction cache
reduces the design time, but to verify the validity of (5).
We also estimated a reduction in the executed cycles from a
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Fig. 7. Performance prediction accuracy when applying RDIP.

TABLE II
ERROR RATE OF CPI ESTIMATED BY THE TWO METHODS

# of cache misses * 11 cycles Proposal
Average Maximum Average Maximum

RDIP 9.0% 43.1% 1.1% 4.1%
FNL+MMA 33.5% 166.7% 2.3% 7.3%
D-JOLT 43.6% 234.8% 5.1% 11.7%

reduction in L1I cache misses multiplied by 11 cycles, which
is the difference between the L2 cache load-to-use latency (15
cycles) and the L1I cache load-to-use latency (4 cycles). We
then calculated CPI when applying RDIP, which is depicted
as # of cache misses × 11 cycles in Fig. 7. The proposed
method estimated CPI more accurately than the estimate using
the reduction in L1I cache misses.

To show that our proposed method is also effective for state-
of-the-art prefetchers, we conducted the same evaluation as
RDIP on FNL+MMA [6] and D-JOLT [3]. Table II presents
the results of this study. Although the error rate of our
proposed method was larger than that when applying RDIP,
the performance estimate using our proposed method is more
accurate than the performance estimate using a reduction in
L1I cache misses.

VI. RELATED WORK

Matsuo et al. used the notion that after an instruction cache
miss occurs, the latency of the instruction cache miss can be
hidden until the next branch misprediction in their method
of dynamically changing the length of the instruction supply
pipeline [19].

There are several performance-modeling techniques with
a dependence graph [20], [21]. Although they help design-
ers determine which components should be improved, our
proposed method helps designers estimate the performance
obtained by making specific modifications to the components,
such as changing the cache replacement algorithm or adding
prefetchers.

VII. CONCLUSION

We introduced the idea of a miss region as an appropriate
metric for designing an instruction cache. We also proposed
a method for estimating the performance when modifying
the instruction cache design based on the number of miss
regions. Our proposed method represents the performance of

a processor applying an existing instruction prefetcher with an
average error of 1.1% and a maximum error of 4.1%.
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