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Abstract
The single-thread performance of a processor core is es-
sential even in the multicore era. However, increasing the
processing width of a core to improve the single-thread
performance leads to a super-linear increase in power con-
sumption. To overcome this power consumption issue, an
instruction set architecture for general-purpose processors,
called STRAIGHT, has been proposed. STRAIGHT adopts
a distance-based ISA, in which source operands are speci-
fied by the distance between instructions. In STRAIGHT, it
is necessary to satisfy constraints on the distance used as
operands to generate executable code. However, it is not yet
clear how to generate code that satisfies these constraints in
the general case. In this paper, we propose three compiling
techniques for STRAIGHT code generation and prove that
our techniques can reliably generate code that satisfies the
distance constraints. We implemented the proposed method
on a compiler and evaluated benchmark programs compiled
with it through simulation. The evaluation results showed
that the proposed method works in all cases, including con-
ditions where the number of registers is small and existing
methods fail to generate code.

CCS Concepts: • Software and its engineering→ Com-
pilers; • Computer systems organization→ Superscalar
architectures.

Keywords: compiler, code generation, instruction set archi-
tecture, instruction-level parallelism
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1 Introduction
The single-thread performance for executing sequential por-
tions of a program is a crucial factor for a processor core,
even in themulticore era [19, 21]. This is because the speedup
from a parallel execution is limited by sequential portions
of the program, as Amdahl’s law suggests. As a result, mod-
ern processors extract more instruction-level parallelism to
improve their single-thread performance by increasing the
processing width of a core and the size of the scheduling
window [12, 31].

However, increasing the processing width can lead to a
super-linear increase in power consumption. One of the units
that cause such an increase is a renaming unit. This unit has
a table called a register map table (RMT) to remove false de-
pendencies between instructions. The RMT needs the circuit
area and power consumption in proportion to the square of
the processing width. Thus, the RMT causes the super-linear
increase in circuit area and power consumption [32, 33].
To address this power consumption issue, an instruction

set architecture (ISA) that does not require register renaming,
called STRAIGHT, has been proposed [23]. STRAIGHT has
a register file like a ring buffer in which the results of each
instruction are sequentially written. Each instruction refers
to the source operands by the distance between instructions,
as shown in Figure 1. This value used to specify operands
is called reference distance or simply distance. Owing to this
instruction format, STRAIGHT has no false dependencies
even without register renaming. As a result, STRAIGHT
processors do not require a renaming unit, which increases
power consumption super-linearly with processing width,
thus allowing for larger processing width than conventional
RISC processors [28].
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Figure 1. Register usage and assembly codes in STRAIGHT
architecture. In assembly representation, square brackets
are used to indicate inter-instruction distances ([0] is zero
register). Each destination register is allocated consecutively
as a ring buffer.

STRAIGHT compilers must generate code that satisfies
distance-related constraints, but an algorithm that can gen-
erate such codes in general cases is not yet clear. Since
STRAIGHT uses the distance to specify source operands,
STRAIGHT code has two distance constraints: 1) The ref-
erence distance is statically determined regardless of the
execution path. 2) The reference distance must be less than
an upper limit specified in the ISA specification. Existing
STRAIGHT compilers resolve these constraints by using an
ad hoc algorithm on the premise that there are sufficient reg-
isters [23, 26]. However, we found that without this premise,
these compilers cannot generate executable code that cor-
rectly satisfies the constraints.

In this paper, we propose a code generation algorithm for
STRAIGHT that resolves the distance constraints in the gen-
eral case. Our proposed algorithm consists of the following
three processes. (1) The first is a novel spilling technique. Our
technique appropriately limits the number of live variables
and ensures that the subsequent processes can generate code
that satisfies the distance constraints without additional spill
code. (2) The second is a novel technique in SSA destruction,
which converts a program from an intermediate representa-
tion to a distance-based form. Our SSA destruction technique
reliably and efficiently replaces 𝜙-functions with move in-
structions by combining existing methods. (3) The third is a
novel technique in move insertion, which resolves the dis-
tance constraints. This process generally generates codes
that satisfy distance constraints with fewer move instruc-
tions.
We implemented the proposed algorithm on an existing

STRAIGHT compiler [4] and evaluated benchmark programs
compiled with it through simulation. The evaluation results
show that the proposed method can generate code even un-
der conditions that the existing compiler cannot. Moreover,
the results show that our techniques reduce the number of
move instructions for satisfying the distance constraints.

2 STRAIGHT Architecture
2.1 STRAIGHT Instruction Set Architecture
STRAIGHT is an ISA that specifies the source operands by
the distance between instructions, not by the logical register
numbers [22, 23]. In STRAIGHT, each instruction specifies
its source operand by pointing to the producer instruction,
as “use the result of the 𝑛-th previous instruction.” This value
𝑛 used to specify an operand is called distance. The distance
must be less than an upper limit specified in the ISA specifi-
cation. This upper limit is calledmaximum reference distance,
which is an architecture-specific parameter of STRAIGHT.

Utilizing the maximum reference distance, STRAIGHT
removes register renaming, which causes a super-linear in-
crease in power consumption with a processing width of
a processor core. Due to the constraint on the maximum
reference distance, registers are no longer referenced after
a certain time in STRAIGHT. STRAIGHT has a ring buffer,
where the result of instructions are written sequentially to
these unreferenced registers (Figure 1). Since STRAIGHT as-
sures to overwrite only out-of-life registers, it does not cause
any false dependencies between instructions. The position of
the source operand on the ring buffer can be determined by
simply adding the distance to its head point, eliminating the
complex logic required for conventional register renaming.
The instruction representation of STRAIGHT is similar

to the static single-assignment (SSA) form [5, 16, 30] in that
there is no overwriting. The SSA form is a program repre-
sentation in which all variables are assigned precisely once.
Because this representation is compatible with the write-
once manner of register usage in STRAIGHT, STRAIGHT
compilers [4, 23, 26] uses the SSA form as an intermediate
representation.

2.2 Distance Constraints in Code Generation
In STRAIGHT, it is necessary to use different code generation
techniques than in conventional RISCs due to the distance-
related constraints. Conventional RISCs use a logical register
number to specify the source operands. On the other hand,
STRAIGHT uses a distance between instructions, which is
a relative value. This value can be easily changed when
inserting or relocating instructions to satisfy the constraint.
For this reason, it is challenging to determine the placement
of each instruction individually.

A STRAIGHT compiler needs to generate machine codes
to satisfy the following two distance constraints:

1. The source operands of each instruction must exist at
the same distance for all execution paths.

2. The distance of each source operand must be no longer
than the maximum reference distance.

To resolve these distance constraints, a STRAIGHT com-
piler inserts move instructions to copy variables and nop in-
structions to adjust distances. These instructions, which are
not directly related to the execution of the program, usually
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do not affect performance. However, an excessive insertion
of themmay have a negative impact. Therefore, a STRAIGHT
compiler aims to convert programs to the STRAIGHT form
with as few additional instructions as possible. We describe
existing methods for resolving distance constraints in Sec-
tion 3.

2.3 Distance-Based Calling Convention
STRAIGHT has distance-based calling conventions. In con-
ventional RISCs, arguments and return values are passed
between functions by placing them on specific logical regis-
ters. However, STRAIGHT cannot use similar conventions
due to the lack of named general-purpose registers.
STRAIGHT uses a relative distance from a function call

and return (jal and ret) to pass arguments and return val-
ues. Concretely, STRAIGHT uses a calling convention where
the previous instruction of a function call produces the first
argument, the second previous instruction produces the sec-
ond argument, and so on. The producers of return values are
also placed similarly to those of arguments.

Saving contexts across a function call also needs a distance-
based convention for STRAIGHT. Since a distance across a
function call is generally undetermined, it is impossible to
reference a variable across a function call by distance. Con-
sequently, all general-purpose registers in STRAIGHT are
caller-preserved. However, the lack of callee-saved regis-
ters leads to performance degradation in frequent calls of
leaf procedures. For this reason, a distance-based callee-save
convention is proposed [26]. This method adds additional
arguments and returns values to each function, which are
used as callee-saved values.

3 Challenges of SSA-Based Compiler for
STRAIGHT

In constructing a compiler for STRAIGHT ISA, there are the
following three challenges:

1. Because the condition under which all variables can
be assigned to available registers without spilling is
more complex than in conventional RISC, there is no
clear policy for the insertion of spill code.

2. There is no efficient and certain technique for match-
ing reference distances of different execution paths
within the maximum reference distance.

3. Even when the condition that a program can be trans-
lated into STRAIGHT code without further spilling is
met, it is difficult to keep all the reference distances
within the maximum reference distance.

These challenges are related to each of the three compiling
processes in STRAIGHT: spill code generation, SSA destruc-
tion, and move insertion. This section summarizes existing
compiler techniques and their limitations that we found for
each process.

3.1 Spill Code Generation
Spill code generation is the process of spilling variables so
that all live variables can be assigned to available registers [8,
10, 13]. In this process, an excessive insertion of spill codes
diminishes the execution speed. Thus, spill code generation
aims to minimize the execution of spill codes while ensuring
that all live variables can be assigned to available registers
without further spilling.

However, minimizing the number of spill codes is a chal-
lenging task for a STRAIGHT compiler. This is because the
condition in which all live variables can be assigned is more
intricate in STRAIGHT than in conventional RISCs. In con-
ventional RISCs, the number of allocatable variables corre-
sponds exactly to the number of logical registers because
it is sufficient for each variable to exist in one register. On
the contrary, in STRAIGHT, the number of allocatable vari-
ables does not always correspond to the maximum reference
distance. This is for two reasons: (1) A single value often ex-
ists simultaneously at multiple referable distances to satisfy
the distance constraints. (2) A store instruction consumes a
register and increases other reference distances. Thus, more
registers can be consumed than the number of live variables
at each program point. As a result, we cannot easily check
whether a program needs spill code even if the number of
variables is less than that of referable registers at every pro-
gram point. In fact, we found that the existing STRAIGHT
compiler [4] did not spill; thus, it failed to compile a program
when it needed spill code to resolve the distance constraints.

3.2 SSA Destruction
SSA destruction is the process of converting a program
from the SSA form to an executable form by eliminating
𝜙-functions [9, 18]. The 𝜙-function is a statement used to
merge different variables of the predecessor blocks. Since 𝜙-
functions are not implemented as machine code, a compiler
needs to replace them with move instructions during SSA
destruction.

In STRAIGHT, 𝜙-functions are used as markers to merge
references, whose distances differ with the execution path.
A conventional RISC compiler eliminates 𝜙-functions by as-
signing different variables to the same register. In contrast,
a STRAIGHT compiler eliminates 𝜙-functions by placing
the variables at the same distance from the join block. The
reference distance may differ for different execution paths,
even when referencing the same variable. For this reason,
the STRAIGHT compiler adds 𝜙-functions for all live vari-
ables to each join block before code generation as shown in
Figure 2 (a).

Distance fixing [23] is a naïve method of SSA destruction
in STRAIGHT. This method eliminates 𝜙-functions to copy
live variables in a common order at the end of each pre-
decessor block (Figure 2 (b)). The region where these copy
instructions exist is called a fixed region, where the positions
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%a = phi(%1, %1)

%b = phi(%2, %5)

%c = phi(%3, %4)

%1 = ...
br   ...    

%2 = ...
(3 instructions) 
%3 = (use %2) 
j    .join

%4 = ...
%5 = (use %4) 

.if .else

.join

(a) SSA program

(%a → [4])

(%b → [3])

(%c → [2])

%1 = ...
br   ...    

%2 = ...
(3 instructions) 
%3 = (use %2)
%a = move %1
%b = move %2
%c = move %3 
j    .join

%4 = ...
%5 = (use %4)
%a = move %1
%b = move %2
%c = move %3
nop 

.if .else

.join

(b) Result by the naïve method

(%a → [9])

(%b → [2])

(%c → [3])

%a = ...
br   ...    

%2 = ...
(3 instructions) 
%c = (use %2)
%b = move %2
j    .join

(4 x nop)
%c = ...
%b = (use %c)
nop 

.if .else

.join

(c) Result by the reordering method

Figure 2. SSA destruction in STRAIGHT. In this figure, square brackets are used to indicate distances from the join point.

of instructions are fixed in subsequent processes. Thus, this
process ensures that each variable can be referenced by a
static distance regardless of an execution path.
Because the distance fixing inserts many redundant in-

structions, an optimizing technique by reordering instruc-
tions is proposed [26]. This technique is hereafter called
the reordering method. The reordering method determines
the positions of inserting move instructions to consider de-
pendencies between variables. It minimizes the number of
move instructions by solving a feedback arc set problem [35].
Meanwhile, it has a disadvantage that the maximum ref-
erence distance constraint may not be met because each
instruction is adjusted to a distant position by inserting nop
instructions (Figure 2 (c)).

However, these two existing methods do not balance cer-
tainty and efficiency. The naïve method can reliably translate
from SSA form but requires many redundant move instruc-
tions. On the contrary, the reordering method is more ef-
ficient but less certain since it cannot generate executable
code in case the reference distance of a 𝜙-function exceeds
the maximum reference distance.

3.3 Move Insertion
Move insertion is the process of splitting a live range of each
variable [15]. In STRAIGHT, instructions that can reference
a variable are limited to be within a maximum reference
distance from that variable. Thus, splitting a wide live range
is directly related to the maximum reference distance con-
straint. For this reason, move insertion is an essential process
in STRAIGHT to generate executable code.
Distance bounding [23] is the only move insertion tech-

nique that has ever been proposed. This method inserts move
instructions to split distances in the following way:

Step 1) Find a reference whose distance exceeds the maxi-
mum reference distance. If not found, end the pro-
cess.

Step 2) Add a move instruction at the maximum possible dis-
tance from the consumer for relaying the reference
found in Step 1. Then, go back to Step 1.

A B C Jmp B3 A5 C4

B4 A2 C5

B5 A2 C4

A4

C2 A5

B6 A2 C4C3 A2A4

B4 A2 C4C4 A2A5B3

A4 B4 C4 B2 A4 C3(b) optimal solution

(a) naïve solution

pred block adjusting block

in�nite loop

instruction in the �xed region

instruction with
result X and reference distance nXn

reference that exceeds
the maximum reference distanceXn

Figure 3. Example of move insertion where the maximum
reference distance is 4. (a) a naïve solution that causes an
infinite loop (b) an optimal solution that results in 3 move
instructions

However, the distance bounding may insert many redun-
dant instructions. Moreover, we found that it does not work
in theworst cases, as shown in Figure 3. The insertedmove in-
struction extends the distance of references across it. Hence,
it is challenging to satisfy the constraint on the maximum
reference distance for all instructions in an ad hoc manner.

4 Proposed Method
4.1 Overview
To address the challenges described in Section 3, we propose
a novel compiler algorithm comprising of the following three
techniques:

1. Spilling technique that ensures that there exists a way
to insert moves to generate executable codes.

2. SSA destruction technique that minimizes the number
of move instructions at various maximum reference
distances

3. Move insertion technique that ensures to resolve the
maximum reference distance constraint after applying
our spilling technique

These processes are executed in the compilation flow shown
in Algorithm 1.
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Algorithm 1: Proposed Compilation Flow
Definition : 𝑓 is a function in SSA form

𝑙 is max referable length
Require : 𝑓 has no loop (for simplicity).

1 Function StraightCodeGen(𝑓 , 𝑙):
2 SpillCodeGen(𝑓 , 𝑙) ▶ Section 4.2
3 foreach join point 𝒑 in the execution order of 𝑓 do
4 SSADestruction(𝑝, 𝑙) ▶ Section 4.3
5 foreach unfixed path 𝒖 before 𝑝 do
6 MoveInsertion(𝑢, 𝑙) ▶ Section 4.4
7 𝑢.setFixed()

8 foreach unfixed path 𝒖 do
9 MoveInsertion(𝑢, 𝑙) // for calling conv.

10 Function MoveInsertion(𝑢, 𝑙):
11 RelayingVariable(𝑢, 𝑙) ▶ Section 4.4.1
12 SortingVariable(𝑢, 𝑙) ▶ Section 4.4.2

This division of the compilation processes in STRAIGHT
is general to distance-based ISAs, not specific to STRAIGHT
ISA. This is for the following two reasons:

1. Since inserting spill code affects other reference dis-
tances, it is difficult to perform spilling simultaneously
with the other two processes.

2. The maximum reference distance constraint can only
be resolved once the reference distance is statically
determined by SSA destruction.

In the case of a distance-based ISA where store instructions
do not affect other reference distances, the spilling process
could be executed concurrently with the other processes.
However, such a distance-based ISA requires a more complex
hardware implementation than STRAIGHT ISA.
Our proposed algorithm uses SSA form as the compiler

representation because this representation is compatible
with the write-once manner of register usage in STRAIGHT.
Our techniques can be applied to STRAIGHT compilers that
use other compiler representations, but a process of conver-
sion to a single-assignment representation is additionally
required for code generation.

4.2 Spill Code Generation
The existing STRAIGHT compilers cannot generate code
when its input program cannot satisfy the distance con-
straints without spill codes. In such cases, the compiler needs
to spill variables to satisfy the constraints.

To deal with this situation, we propose a spilling technique
for STRAIGHT to satisfy the distance constraints. First, we
consider a condition for satisfying the distance constraints
without spill codes. Then, we propose a spilling technique
to minimize spill codes using the condition that we obtain.
Before a detailed explanation, we introduce some terms

and notations that help to describe our method.

• The maximum reference distance is denoted by 𝑙 .
• The two terms variable and place are used as follows.
– A variable represents the unique value in an SSA-
form program.

– A place represents the unique position of a register
occupied by an instruction in a distance-based form.

• The sequence of results of instructions within the max-
imum reference distance is called a context.
– The value located at the oldest place within a context
is designated as oldest value.

– Within a context, a value that is not subsequently
referenced is called a dead value, and the place of a
dead value is called a dead place1.

• A program is said to be assignable if it can be trans-
lated into STRAIGHT form by inserting only move
instructions.

To make a program assignable, it must satisfy the follow-
ing two properties:

1. At each program point, all live variables are still refer-
able when the next instruction is executed.

2. At each join point, the place of each live value can be
matched in every predecessor block.

To show the conditions to satisfy the above properties, we
first prove Lemma 1.

Lemma 1. If at least one dead place exists in the context,
live values can be arbitrarily reordered by inserting only move
instructions.

Proof. With a dead place 𝑒 , any two live values 𝑥,𝑦 can be
swapped with 2𝑙 move instructions in the following process.

1. Let 𝑥 be the older value among 𝑥 and 𝑦.
2. Insert first 𝑙 move instructions:
• If 𝑒 is the oldest place, insert a move instruction
to copy 𝑥 . The result of the inserted instruction is
denoted by 𝑥𝑒 .
• Otherwise, insertmove instructions to copy the value
at the oldest place.

3. Insert last 𝑙 move instructions:
• If 𝑥 is located at the oldest place, insert a move in-
struction to copy 𝑦.
• If 𝑦 is located at the oldest place, insert a move in-
struction to copy 𝑥𝑒 .
• Otherwise, insertmove instructions to copy the value
at the oldest place.

Repeating this swap procedure enables reordering live values
in an arbitrary order. □

From Lemma 1, we obtain Theorem 2, which shows the
sufficient condition to make a program assignable.

1Note that the dead place is not always synonymous with the place of a
dead variable. This is because when a live variable has multiple occurrences
within a context, only themost recent valuewill be referenced by subsequent
instructions.
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Theorem 2. A program is assignable if the number of live
variables is less than 𝑙 at any program point.

Proof. When the number of live variables is less than 𝑙 at
every program point, at least one dead place exists in context.
Hence, using Lemma 1, we can show the following:

1. All live variables are still referable when the next in-
struction is executed by reordering the context so that
the oldest place is a dead place.

2. The position of each live value can be matched in every
predecessor block by reordering the corresponding
variables in a common order.

However, a program with at most 𝑛 live variables is not al-
ways assignable. When there are only 𝑛 𝜙-functions at a join
block, the predecessors of the join block are not assignable
because a jump instruction occupies a register. □

Using Theorem 2, we can show that spill code generation
of distance-based ISA can be implemented with conventional
allocation techniques [10, 13, 18, 29, 34] by limiting the num-
ber of live variables to 𝑙 − 1 at any program point. Although
inserting a load/store instruction might increase the refer-
ence distance of following instructions, it does not affect the
condition of Theorem 2 because the place occupied by that
instruction becomes dead immediately after its execution.

4.3 SSA Destruction
Two SSA destruction methods are proposed for STRAIGHT
compilers, as described in Section 3.2. However, there is no
method that balances certainty and code quality. The naïve
method can reliably eliminate 𝜙-functions but often inserts
redundant move instructions. The reordering method in-
serts fewer move instructions but does not reliably generate
STRAIGHT codes.

Our proposed technique is a technique that combines two
existing methods by incrementally changing which method
to use for each 𝜙-function. This technique provides reliable
and efficient SSA destruction for any conditions of maximum
reference distance.
Our technique decides which of the existing methods to

apply for each 𝜙-function in the following way:
Step 1) Let 𝑅 be the set of all 𝜙-functions and let 𝑆 be an

empty set.
Step 2) Apply the reordering method to 𝑅 and the naïve

method to 𝑆 .
Step 3) If there are no 𝜙-functions whose reference distance

exceeds the maximum reference distance, end the
process.

Step 4) Otherwise, remove the 𝜙-function that has the most
distant references from 𝑅 and add it to 𝑆 . After that,
restore the order of instructions and go to Step 2.

Even in the worst case, this algorithm ensures obtaining the
same result as the naïve method. Thus, the certainty of SSA
destruction is guaranteed. Moreover, our method can reduce

the number of move instructions by applying the reordering
method as much as possible.

4.4 Move Insertion
STRAIGHT compiler inserts move instructions to satisfy dis-
tance constraints. However, existing methods are ad hoc and
thus insert many redundant move instructions. Furthermore,
code generation fails in the worst case due to a failure to
satisfy the constraints. This is because adding move instruc-
tions to resolve the constraint may prevent satisfying the
constraint as a whole by extending the distance of other
references.

Our proposed method generates efficient code in the gen-
eral case through two processes: relaying variables and sort-
ing variables. This two-phase method is based on our obser-
vation that the purpose of move insertion can be divided
into two:

1. For relaying variables that cannot be referenced di-
rectly due to their long live range.

2. For sorting variables to a specific order that is deter-
mined by the result of SSA destruction or calling con-
ventions.

We describe the method of relaying variables in Section 4.4.1
and sorting variables in Section 4.4.2.

4.4.1 Relaying Variables. Relaying variables is the pro-
cess of inserting move instructions to relay a variable with a
long live range due to the constraint on the maximum refer-
ence distance. The insert position of such relay instructions
should be as far from the producer as possible. This is be-
cause the live range can be covered with fewer instructions
if the reference distance of relaying instructions is longer.
Our proposed method inserts move instructions so that

the variable is always relayed at the maximum distance. The
detailed algorithm for relaying variables is as follows.
• For each instruction 𝐼 in execution order
1. Insert a move instruction of the oldest variable im-

mediately before 𝐼 until the oldest variable is dead.
2. Fix the position of the instruction 𝐼 .

Since each inserted move instruction always targets the old-
est variable, it references at the maximum reference distance.
Therefore, this method is optimal in the number of additional
instructions to relay variables.

4.4.2 Sorting Variables. Sorting variables is the process
of inserting move instructions so that live variables match a
specific order at the end of the path. This order is defined by
the result of SSA destruction or calling conventions. In this
case, it is sometimes more efficient to insert move instruc-
tions whose reference distance is not the maximum reference
distance. For this reason, the existing method often inserts
many redundant instructions.
We design an algorithm that can reliably sort variables

with an optimal number of instructions in the general case.
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Before going into detail, we first set up the problem to solve.
We introduce the following definitions:
• The integer 𝑛 denotes the number of variables to sort.
– The 𝑖-th variable is denoted by 𝑣𝑖 .
• Define the position of variables 𝜏 before sorting as
follows.
– Let 𝑎1, . . . , 𝑎𝑙 be the context before sorting.
– Define 𝜏 by setting 𝜏 (𝑖) = argmax𝑗 {𝑣𝑖 = 𝑎 𝑗 }2.
• Define the position of variables 𝜋 after sorting as fol-
lows.
– Let 𝑏1, . . . , 𝑏𝑚 be the sequence of variables to be sat-
isfied after sorting, where 𝑛 ≤ 𝑚 < 𝑙 .

– Define 𝜋 by setting 𝜋 (𝑖) = argmin𝑗 {𝑣𝑖 = 𝑏 𝑗 }3.
First, we consider a lower bound on the number of move

instructions required for sorting. When a consumer refers
to a producer at a distance x, at least ⌈𝑥/𝑙⌉ − 1 move in-
structions are required between them. Now, suppose that
sorting is completed by insertion of 𝑑 move instructions.
Thus, the distance between the producer and the consumer
of 𝑥𝑖 is 𝜋 (𝑖) − 𝜏 (𝑖) + 𝑙 +𝑑 . Let 𝑓 (𝜏, 𝜋, 𝑑) be the summation of
the minimum number of required move instructions for all
variables:

𝑓 (𝜏, 𝜋, 𝑑) =
∑︁
𝑖

⌈
𝜋 (𝑖) − 𝜏 (𝑖) + 𝑑

𝑙

⌉
. (1)

If 𝑓 (𝜏, 𝜋, 𝑑) > 𝑑 , sorting by inserting 𝑑 move instructions
is obviously impossible. Now, we call 𝑑∗ the smallest non-
negative integer 𝑑 satisfying 𝑓 (𝜏, 𝜋, 𝑑) ≤ 𝑑 . The integer 𝑑∗ is
a lower bound for the number of move instructions required
for sorting.
Algorithm 2 shows our proposed algorithm for sorting

variables with 𝑑∗ move instructions. To show that this algo-
rithm always works, we prove Theorem 6 through Lemmas
3, 4, and 5.

Lemma 3. Let 𝑑∗ be the minimum non-negative integer 𝑑
satisfying 𝑓 (𝜏, 𝜋, 𝑑) ≤ 𝑑 . Then

𝑓 (𝜏, 𝜋, 𝑑∗) = 𝑑∗ . (2)

Proof. Let 𝑔(𝑑) = 𝑓 (𝜏, 𝜋, 𝑑) − 𝑑 . 𝑔(𝑑) has three properties:
1. 𝑔(0) ≥ 0.
2. For any non-negative integer𝑑 ,𝑔(𝑑+𝑙)−𝑔(𝑑) = 𝑛−𝑙 <

0.
3. For any non-negative integer 𝑑 , 𝑔(𝑑 + 1) − 𝑔(𝑑) = −1

if 𝑔(𝑑 + 1) − 𝑔(𝑑) < 0.
Using these properties, we can obtain the conclusion. □

Lemma 4. If 𝑑∗ > 0, then there exists an 𝑖 in {1, 2, . . . , 𝑛}
such that ⌈

𝜋 (𝑖) − 𝜏 (𝑖) + 𝑙 + 𝑑∗
𝑙

⌉
≠

⌈
𝜋 (𝑖) + 𝑑∗ − 1

𝑙

⌉
. (3)

2Choose the largest index because it is optimal to reference the closest
instruction among those that have the same variable.
3Choose the smallest index because the later instructions can copy from
the preceded instruction that produces the same variable.

Algorithm 2:Move insertion for sorting variable
Definition : 𝑢 is the path to insert move instructions

𝑙 is the max referable length

1 Function SortingVariable(𝑢, 𝑙):
2 𝜏 ← the position of variables before sorting
3 𝜋 ← the position of variables after sorting
4 𝑑∗ ← minimum non-negative integer 𝑑 satisfied

𝑓 (𝜏, 𝜋, 𝑑) ≤ 𝑑

5 RecursiveInsertion(𝑢, 𝜏, 𝜋, 𝑑∗)

6 Function RecursiveInsertion(𝑢, 𝜏, 𝜋, 𝑑∗):
7 if 𝑑∗ > 0 then
8 𝑆 ←

{
𝑖

��� ⌈𝜋 (𝑖 )−𝜏 (𝑖 )+𝑑∗+𝑙
𝑙

⌉
≠

⌈
𝜋 (𝑖 )+𝑑∗−1

𝑙

⌉}
(≠ ∅)

9 𝑗 ← argmin𝑖∈𝑆 {𝜏 (𝑖)}
10 Insert a move of 𝑥 𝑗 after the end of 𝑢
11 Update the context 𝜏 to 𝜏 ′ by

𝜏 ′ (𝑖) ←
{
𝑙 (𝑖 = 𝑗)
𝜏 (𝑖) − 1 (> 1) (𝑖 ≠ 𝑗)

12 RecursiveInsertion(𝑢, 𝜏 ′, 𝜋, 𝑑∗ − 1)

Proof. Suppose that there does not exist an 𝑖 satisfying equa-
tion 3. Hence,

𝑓 (𝜏, 𝜋, 𝑑∗) =
∑︁
𝑖

{⌈
𝜋 (𝑖) + 𝑑∗ − 1

𝑙

⌉
− 1

}
. (4)

Now, define 𝑟 by 𝑟 = 𝑑∗ mod 𝑙 . In the case where 𝑟 = 0,
𝑓 (𝜏, 𝜋, 𝑑∗) < 𝑑∗. This contradicts the result of Lemma 3.
Next, consider the case in which 𝑟 ≠ 0. Let 𝑇 be the set

𝑇 =

{
𝑖

���� ⌈𝜋 (𝑖) + 𝑑∗ − 1𝑙

⌉
≠

⌈
𝑑∗

𝑙

⌉}
. (5)

Then, by using |𝑇 | < 𝑟 ≤ 𝑑∗, we see that

𝑓 (𝜏, 𝜋, |𝑇 |) ≤ 𝑓 (𝜏, 𝜋, 𝑟 ) = |𝑇 |. (6)

This contradicts that𝑑∗ is the minimum non-negative integer
𝑑 satisfying 𝑓 (𝜏, 𝜋, 𝑑) ≤ 𝑑 . □

Lemma5. In Algorithm 2, RecursiveInsertion(𝑢, 𝜏, 𝜋, 𝑑∗)
is always called with the condition that 𝑑∗ is the minimum
non-negative integer 𝑑 satisfying 𝑓 (𝜏, 𝜋, 𝑑) ≤ 𝑑 .

Proof. It clearly satisfies the condition when it is first called;
thus, we prove that 𝑑∗ − 1 is the minimum non-negative
integer 𝑑 satisfying 𝑓 (𝜏 ′, 𝜋, 𝑑) ≤ 𝑑 in a recursive call.
Consider the difference of 𝑓 (𝜏, 𝜋, 𝑑∗) and 𝑓 (𝜏 ′, 𝜋, 𝑑∗ − 1).

Since 𝑗 ∈ 𝑆 (lines 8–9 in Algorithm 2),

𝑓 (𝜏, 𝜋, 𝑑∗) − 𝑓 (𝜏 ′, 𝜋, 𝑑∗ − 1)

=

⌈
𝜋 ( 𝑗) − 𝜏 ( 𝑗) + 𝑑∗ + 𝑙

𝑙

⌉
−
⌈
𝜋 ( 𝑗) + 𝑑∗ − 𝑙

𝑙

⌉
= 1. (7)

Combining this with 𝑓 (𝜏, 𝜋, 𝑑∗) ≤ 𝑑∗, we have 𝑓 (𝜏 ′, 𝜋, 𝑑∗ −
1) ≤ 𝑑∗ − 1. Therefore, 𝑑∗ − 1 is clearly the minimum non-
negative integer that satisfies the condition. □
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Theorem 6. Algorithm 2 is (1) sound, (2) complete, and (3) op-
timal for the number of inserted move instructions.

Proof. (1) The termination condition of the recursive call
𝑑∗ = 0means that no additional instructions are required for
sorting. Therefore, the result of this algorithm satisfies the
constraint on the maximum reference distance. (2) Lemma 4
and 5 together show that this algorithm always works. (3)
This sorting algorithm is optimal for the number of instruc-
tions since 𝑑∗ is the tight lower bound. □

5 Evaluation
5.1 Methodology
We implemented the three proposed compiler techniques
on the existing compiler [4]. First, we evaluated that our
proposed spilling technique allows our compiler to generate
executable code in all cases by measuring the change in the
number of instructions. Then, we evaluated each of the other
proposed techniques by measuring the following values.

1. Reduction rate of move instructions by our proposed
SSA destruction

2. Reduction rate of move instructions by our proposed
move insertion

The evaluation was performed by measuring the num-
ber of instructions required to execute benchmark programs
compiled with our compiler through simulations. The bench-
mark programs used for the evaluation were CoreMark [1],
401.bzip2 from SPECCPU 2006 [20], and 605.mcf_s, 619.lbm_s,
657.xz_s from SPEC CPU 2017 [11]. These benchmarks are
the same as those used in [26] and all written in C language.
We used a STRAIGHT simulation environment [4] avail-

able on GitHub for the simulations. This environment in-
cludes a basic compiler, a C library, and a simulator for
STRAIGHT. The basic compiler is a STRAIGHT compiler im-
plementation on the version 12 of LLVM [27]. The C library is
a STRAIGHT port of musl libc [2], which is a lightweight libc
implementation. The simulator is based on a cycle-accurate
simulator, Onikiri2 [3].

5.2 Results
5.2.1 Change in Number of Instructions for Differ-
ent Maximum Reference Distances. Figure 4 shows the
change in the number of executed instructions for the maxi-
mum reference distance when using the proposed method.
This figure plots the total number of instructions and the
number of move/load/store instructions which varies mainly
with the maximum reference distance. The vertical dashed
lines indicate the lower bound4 on the maximum reference

4In the calling convention we used, a function can be compiled if the number
of maximum reference distances is greater than the number of its arguments
by at least one. This is because the stack pointer has to be updated immedi-
ately after the function call while keeping the values of the arguments and
the return address. It is possible to generate code under shorter maximum

distancewhere the proposedmethod can compile each bench-
mark. This line is used similarly in the other figures.

We obtained the execution results under all the conditions
that each benchmark can be theoretically compiled. Our
proposed method inserts only the minimum amount of spill
codes required to generate code. That is to say, an increase
in load or store instructions indicates that it is the result
under a condition that the existing compiler cannot compile.
Hence, the proposed method can generate code even under
conditions that the existing methods cannot.
We can see in this figure that the peak of the line about

move instructions is not at the shortest maximum reference
distance. The more spills, the fewer variables have a live
range across a join point. This results in a decrease in move
instructions caused by SSA destruction. For this reason, the
peak point is not always an endpoint.

5.2.2 Reduction Rate of Move Instructions by Our
Proposed SSA Destruction. Figure 5 shows the reduction
rate in move instructions when using our proposed SSA
destruction compared to when using the naïve SSA destruc-
tion. Our proposed method did not fail in SSA destruction,
and we obtained the result with various maximum reference
distances.

In the evaluation of this paper, the upper limit of the max-
imum reference distance was set to 127 due to the limitation
of the instruction word length. However, Figure 5 implies
that the performance may be further improved by using a
larger value to the maximum reference distance because an
increasing trend was seen even at around 127 for 657.xz_s.

For all benchmarks except CoreMark, as the maximum ref-
erence distance increased, the reduction rate of the executed
move instructions decreased in some portions. As the maxi-
mum reference distance increases, the reduction rate seems
to continue to increase because the number of 𝜙-functions to
which the reordering method can be applied increases. How-
ever, the evaluation result implies that is not always true.
This can be explained by the fact that changes in the order
of instructions by the reordering at a join point method may
adversely affect the efficiency in SSA destruction at other
join points.

For 619.lbm_s, our proposed method could not reduce the
number of executed move instructions. This was due to the
characteristics of 619.lbm_s. The function mainly executed
in this benchmark, LBM_performStreamCollideTRT, has a
large number of instructions within each basic block. For this
reason, the reordering method failed to adjust the position of
each 𝜙-function to within the maximum reference distance.
Thus, the result obtained by our proposed method was the
same as those obtained by the naïve method and did not
reduce the number of move instructions.

reference distance conditions by modifying the calling convention, but that
is beyond the scope of this paper.
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Figure 4.Number of executed move/load/store instructions for each benchmark. In this figure, the vertical dashed line indicates
the lower bound on the maximum reference distance where the proposed algorithms can compile each benchmark. The shaded
portion in each figure indicates conditions where the existing method could not generate code without additional spills.
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Figure 5. Reduction rate in move instructions when using
our proposed SSA destruction compared with when using
the naïve SSA destruction.

5.2.3 Reduction Rate of Move Instructions by Our
Proposed Move Insertion. Figure 6 shows the reduction
rate in executed move instructions when comparing the
naïve and proposed move insertion methods. In this compar-
ison, the SSA destruction method was unified to the naïve
one to compare only the efficiency of move insertion. The
hatched areas in this figure indicate the conditions where
the naïve move insertion could not generate executable code.
The naïve method of move insertion can lead to an infinite
loop. For this reason, if compilation did not finish after a
certain time, we concluded that the naïve method could not
compile a program.

For 401.bzip2 and 657.xz_s, the naïve move insertion failed
to generate code under some conditions with shorter maxi-
mum reference distances. This result shows the limitations

of the ad hoc approach and demonstrates the effectiveness
of the proposed algorithm.
Except for some conditions of 619.lbm_s, the number of

move instructions in the proposed method was fewer than
that in the naïve method. Particularly, in CoreMark, the
number of move instructions was reduced by up to 12.5%.
CoreMark is a benchmark in which load/store instructions
increased significantly as the maximum reference distance
decreased. In such a case, the number of live variables at each
program point is almost the same as the number of the max-
imum reference distance; thus, it is difficult to resolve the
distance constraints in the existing method. Hence, the re-
duction of the move instruction in our proposed method had
a significant effect on CoreMark. Additionally, this property
of a large increase in load/store of CoreMark is also common
to 401.bzip2. Thus, it is expected that 401.bzip2 could also
have a significant effect, although there are no data because
it could not be compiled with the existing method.

For 619.lbm_s, we observed some conditions in which the
proposed method executed more move instructions than the
naïvemethod. Since the proposedmethod divides the process
into two steps and optimally inserts move instructions in
each step, it does not always achieve the overall optimal
result. However, the increase in the number of instructions
from existing methods is very small, if any.

6 Related Works
Our proposed method determines the position of instruc-
tions after spilling. This is similar to conventional regis-
ter allocation techniques that completely decouple spilling

81



CC ’23, February 25–26, 2023, Montréal, QC, Canada Shu Sugita, Toru Koizumi, Ryota Shioya, Hidetsugu Irie, and Shuichi Sakai

0 20 40 60 80 100 120
Maximum reference distance

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

R
ed

uc
ti

on
ra

te

(a) CoreMark

0 20 40 60 80 100 120
Maximum reference distance

0.0%

5.0%

10.0%

R
ed

uc
ti

on
ra

te

(b) 401.bzip2

0 20 40 60 80 100 120
Maximum reference distance

0.00%

1.00%

2.00%

3.00%

4.00%

R
ed

uc
ti

on
ra

te

(c) 605.mcf_s

0 20 40 60 80 100 120
Maximum reference distance

−1.0%

0.0%

1.0%

2.0%

3.0%

R
ed

uc
ti

on
ra

te

(d) 619.lbm_s

0 20 40 60 80 100 120
Maximum reference distance

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

R
ed

uc
ti

on
ra

te

(e) 657.xz_s

Figure 6. Reduction rate in move instructions when using our proposed move insertion compared to when using the naïve
move insertion. In this figure, hatched areas indicate the conditions where the naïve move insertion could not satisfy the
distance constraints.

and register assignment [7, 14, 25]. In conventional RISCs,
some methods of register allocation that perform spilling
and register assignment in the same framework are also
proposed [13, 17]. On the contrary, such methods are not
suitable for STRAIGHT. This is because inserting spill codes
affects the distance of source operands of other instructions,
reducing the efficiency of move insertion.
The instruction representation of STRAIGHT has been

pointed out to have similarities with functional program-
ming [26]. This is from the same observation as for the
SSA form [6, 24], which has the same write-once manner as
STRAIGHT. Consequently, methods used in functional pro-
gramming may be useful for code generation and compiler
optimization in STRAIGHT. For instance, the callee-save
convention in STRAIGHT [26] uses the same approach as
the continuation-passing style [7].

7 Conclusion
STRAIGHT is an instruction set architecture that uses the
distance between instructions to specify the source operands.
Owing to this unique instruction format, STRAIGHT has
no false dependencies between instructions and thus does
not require register renaming, which can cause a signifi-
cant increase in power consumption. However, a STRAIGHT
compiler must generate code that satisfies distance-related
constraints. Existing methods attempt to satisfy these con-
straints in an ad hoc manner and thus may fail to generate
executable code.

In this paper, we proposed three compiling techniques
for STRAIGHT code generation. We proved that these tech-
niques generate executable code under the theoretical short-
est condition of the maximum reference distance where a
benchmark can be compiled. The first was about spill code
generation. This method limits the number of live variables
so that the distance constraint can be satisfied with a min-
imum number of spill codes. The second was about SSA
destruction. This method reliably and efficiently converts
programs to the instruction format of STRAIGHT. The third
was about move insertion. This method resolves the distance
constraint by inserting the optimal number of move instruc-
tions for each of the two types of move instructions.
We implemented our proposed algorithm on an existing

STRAIGHT compiler.We compiled and evaluated benchmark
programs with our compiler under various conditions of
maximum reference distance. The evaluation results showed
that the proposed method could generate code even under
conditions that existing methods could not. Moreover, our
method reduced the number of move instructions for satis-
fying the distance constraints. The proposed method allows
compilation at various maximum reference distances and
evaluation of STRAIGHT processors in various configura-
tions. Consequently, our result is a significant step forward
for the future design of processors based on STRAIGHT ISA.
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